
- •Предмет и метод статистики
- •4Понятие и виды группировок.Принципы построения группировок.Количественные и атрибутивные признаки. Групприровочный признак.Интервальные группировки.
- •5.Понятие статистического показателя.Абсолютные,относительные и среднии показатели.Средняя арифметическая,гармоническая,геометрическая,квадратическая простая и взвешенная.
- •7)Понятие рядов распределения. Дискретные и интервальные ряды распределения
- •1.1. Атрибутивные ряды распределения
- •1.2. Вариационные ряды распределения
- •8. Показатели вариации и способы их расчета. Виды дисперсии в совокупности, распределенной на части. Правило сложения дисперсии.
- •9. Моменты распределения. Показатели формы распределения.
- •13. Понятие доверительного интервала для среднего и доли генеральной совокупности и его определение по показателям выборки.
- •14. Понятие доверительного интервала для среднего и доли генеральной совокупности и его определение по показателям выборки
- •15. Понятие корреляционной зависимости. Поле корреляции. Методы выявления корреляционных связей. Коэффициент Фехнера.
- •17. Понятие ранга. Коэффициент ранговой корреляции Спирмена.
- •18. Уравнение регрессии и его виды. Определение параметров линейного уравнения регрессии. Коэффициент эластичности.
- •2 Типа взаимосвязей между х и у:
- •19. Теоретический коэффициент детерминации и теоретическое корреляционное отношение.
- •20. Оценка значимости коэффициента регрессии и уравнения связи.
- •Вопрос 21. Понятие временного ряда. Виды прогнозов. Общая характеристика методов прогнозирования.
- •Вопрос 22. Аналитические показатели динамики временных рядов.
- •Вопрос 23. Средние показатели динамики временных рядов. Прогнозирование по среднему абсолютному приросту и среднему темпу роста.
- •Вопрос 24. Стационарные временные ряды, проверка ряда на стационарность, построение доверительного интервала для прогноза.
- •Вопрос 25. Выявление основной тенденции в рядах динамики Метод скользящей средней.
- •35. Статистика материальных оборотных средств
- •36.Статистика трудовых ресурсов.
- •26. Определение параметров уравнения тренда. Прогнозирование на основе тренда. Доверительный интервал прогноза.
- •1) Индекс физического объема продукции:
- •2) Индекс цен:
- •3) Индекс себестоимости:
- •29. Индексы Ласпейреса, Пааше и Фишера. Индекс Эджворта и их экономический смысл.
- •30. Индексы фиксированного и переменного состава. Индекс структурных сдвигов. Взаимосвязь индексов и их экономическое содержание.
- •Вопрос 31. Система национальных счетов (снс)
- •Вопрос 32. Макроэкономические показатели и их взаимосвязь. Расчет ввп производственным, распределительным методом и методом конечного использования
- •Вопрос 33. Национальное богатство.
- •Вопрос 34. Статистика основных фондов (оф).
- •35. Статистика материальных оборотных средств
- •36.Статистика трудовых ресурсов.
20. Оценка значимости коэффициента регрессии и уравнения связи.
Для практического использования моделей регрессии большое значение имеет их адекватность, т.е. соответствие фактическим статистическим данным.
Анализ качества эмпирического уравнения парной и множественной линейной регрессии начинают с построения эмпирического уравнения регрессии, которое является начальным этапом эконометрического анализа. Первое же, построенное по выборке уравнение регрессии, очень редко является удовлетворительным по тем или иным характеристикам. Поэтому следующей важнейшей оценкой является проверка качества уравнения регрессии. В эконометрике принята устоявшаяся схема такой проверки, которая проводится по следующим направлениям:
проверка статистической значимости коэффициентов уравнения регрессии
проверка общего качества уравнения регрессии
проверка свойств данных, выполнимость которых предполагалась при оценивании уравнения (проверка выполнимости предпосылок МНК)
Прежде, чем проводить анализ качества уравнения регрессии, необходимо определить дисперсии и стандартные ошибки коэффициентов, а также интервальные оценки коэффициентов. Корреляционный и регрессионный анализ, как правило, проводится для ограниченной по объёму совокупности.
Поэтому параметры уравнения регрессии (показатели регрессии и корреляции), коэффициент корреляции и коэффициент детерминации могут быть искажены действием случайных факторов. Чтобы проверить, на сколько эти показатели характерны для всей генеральной совокупности и не являются ли они результатом стечения случайных обстоятельств, необходимо проверить адекватность построенных статистических моделей.
При анализе адекватности уравнения регрессии (модели) исследуемому процессу, возможны следующие варианты:
1. Построенная модель на основе F-критерия Фишера в целом адекватна и все коэффициенты регрессиизначимы. Такая модель может быть использована для принятия решений и осуществления прогнозов.
2. Модель по F-критерию Фишера адекватна, но часть коэффициентов не значима. Модель пригодна для принятия некоторых решений, но не для прогнозов.
3. Модель по F-критерию адекватна, но все коэффициенты регрессии не значимы. Модель полностью считается неадекватной. На ее основе не принимаются решения и не осуществляются прогнозы.
Проверить значимость (качество) уравнения регрессии–значит установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным, достаточно ли включенных в уравнение объясняющих переменных для описания зависимой переменной. Чтобы иметь общее суждение о качестве модели, по каждому наблюдению из относительных отклонений определяют среднюю ошибку аппроксимации. Проверка адекватности уравнения регрессии (модели) осуществляется с помощью средней ошибки аппроксимации, величина которой не должна превышать 12-15% (максимально допустимое значение).
Оценка значимости уравнения регрессии в целом производится на основе F-критерия Фишера, которому предшествует дисперсионный анализ. В математической статистике дисперсионный анализ рассматривается как самостоятельный инструмент статистического анализа. В эконометрике он применяется как вспомогательное средство для изучения качества регрессионной модели. Согласно основной идее дисперсионного анализа, общая сумма квадратов отклонений переменной (y) от среднего значения (yср.) раскладывается на две части: «объясненную» и «необъясненную»:
Схема дисперсионного анализа имеет следующий вид:
(n –число наблюдений, m–число параметров при переменной x)