Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Referateo Primo.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
71.65 Кб
Скачать
    1. Эластичность спроса и предложения

Для исследования экономических процессов часто используется понятие эластичности функции.

Понятие эластичности было введено Аланом Маршаллом в связи с анализом функции спроса. По существу, это понятие является чисто математическим.

Э ластичностью функции Еx(y) называется предел отношения относительного приращения функции y к относительному приращению переменной x при Dx®0:

Эластичность функции показывает приближенно, на сколько процентов изменится функция y= f(x), при изменении независимой переменной x на 1%.

Приведем несколько конкретных иллюстраций такой зависимости. Прямой коэффициент эластичности спроса по цене устанавливает, на сколько процентов увеличивается (уменьшается) спрос Q на товар i при уменьшении (увеличении) его ц ены P на 1%:

П ерекрестный коэффициент эластичности спроса по цене показывает, на сколько процентов изменится спрос на товар i при однопроцентных колебаниях цены товара j (j = 1,2,…n): .

К оличественную сторону взаимодействия дохода и спроса отражает коэффициент эластичности спроса по доходу, который указывает, на сколько процентов изменится спрос на i-тый товар Qi если доход, предназначенный на текущее потребление, изменится на 1%: .

В экономике очень часто требуется найти наилучшее или оптимальное значение показателя: наивысшую производительность труда, максимальную прибыль, максимальный выпуск, минимальные издержки и т. д. Каждый показатель представляет собой функцию от одного или нескольких аргументов. Таким образом, нахождение оптимального значения показателя сводится к нахождению экстремума функции.

    1. Прочие случаи

В экономике очень часто требуется найти наилучшее или оптимальное значение показателя: наивысшую производительность труда, максимальную прибыль, максимальный выпуск, минимальные издержки и т. д. Каждый показатель представляет собой функцию от одного или нескольких аргументов. Таким образом, нахождение оптимального значения показателя сводится к нахождению экстремума функции.

Также известно, что производительность труда есть производная объема продукции по времени.

Пусть функция u = u(t) выражает количество произведенной продукции u за время t. Необходимо найти производительность труда в момент tο.

За период времени от tο до tο + Δt количество произведенной продукции изменится от значения uο = u(tο) до значения uο + Δu = u(tο + Δt). Тогда средняя производительность труда за этот период времени Zср = Δu :Δt. Очевидно, что производительность труда в момент tο можно определить как предельное значение средней производительности за период времени от tο до tο + Δt при Δt → 0, т.е.

z = lim Zср = lim Δu/Δt = u'(t) при Δt→0 .

В процессе экономических исследований решаются различные задачи, многие из которых требуют применения использования производных и дифференциалов.

    1. Пример задачи с использованием производной

Задача: Функция спроса имеет вид QD=100 – 20p, постоянные издержки TFC (total fixed costs) составляют 50 денежных единиц, а переменные издержки TVC (total variable costs) на производство единицы продукции – 2 денежные единицы. Найти объём выпуска, максимизирующий прибыль монополиста.

Решение: Прибыль есть выручка минус издержки: П=TR – TC,

где TR=p*Q; TC=TFC+TVC.

Найдём цену единицы продукции: 20p=100 – Q p=5 – Q/20.

Тогда П=(5 – Q/20)Q – (50 + 2Q)= – Q2 + 60Q – 1000 р. Max

Найдём производную: П'(Q)= –2Q+60.

Приравняем производную к нулю: –2Q+60=0 Q=30.

При переходе через точку Q=30 функция П(Q) меняет свой знак с плюcа на минус, следовательно, эта точка является точкой максимума, и в ней функция прибыли достигает своего максимального значения. Таким образом, объём выпуска, максимизирующий прибыль, равен 30 единицам продукции.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]