- •Понятие комплексного числа. Алгебр-ая форма представления. Операции над комплексными числами в алгебр. Форме
- •Тригонометрическая форма представления комплексного числа. Умножение и деление чисел.
- •Формула Муавра извлечения корня степени n (n ϵ n) и возведения в целую степень
- •4 Показательная форма комплексного числа. Операции над числами, записанными в показательной форме.
- •5 Многочлен в комплексной области. Основные теоремы о мн-ах.
- •6. Первообразная и неопределенный интеграл. Простейшие свойства неопределенного интеграла.
- •Основные методы интегрирования. Неопределенное (табличное) интегрирование. Таблица основных неопределенных интегралов.
- •2.Метод замены переменной–основан на использовании формулы
- •Интегрирование с подстановкой в неопределенном интеграле.
- •Интегрирование по частям. Классы функций, интегрируемых по частям.
- •10. Алгоритм интегрирования рациональной функции. Интегрирование простейших дробей. Интегрирование дробей I и II типов
- •11. Теорема о разложении правильной рациональной дроби в сумму простейших дробей. Интегрирование дробей III и IV типов.
- •12. Методы интегрирования тригонометрических выражений
- •13. Интегрирование иррациональных выражений
- •14.Задачи, приводящие к понятию определенного интеграла. Определение интеграла Римана.
- •15.Геометрический и механический смысл определенного интеграла. Необходимые условия интегрируемости функции на отрезке [a;b]. Достаточные условия интегрируемости.
- •Необходимое условие интегрируемости функции на отрезке [a;b].
- •17. Интеграл с переменным верхним пределом и его свойства
- •18.Основные теоремы интегрального исчисления.
- •19 Основные методы вычисления определенного интеграла
- •1 Метод подстановки (Теорема)
- •2 Интегрирование по частям.
- •3 Симметрия подинтегральной функции
- •21.Определение длины плоской кривой. Вычисление длины кривой.
- •22.Вычисление объемов тел с помощью определенного интеграла
- •23.Несобственный интеграл I рода. Вычисление, главное значение
- •24.Несобственный интеграл II рода. Вычисление, главное значение
- •25. Исследование сходимости несобственных интегралов.
- •26 Основные определения и понятия о фмп
- •27 Предел фмп в точке. Свойство фмп, имеющих предел в точке
- •28 Непрерывность фмп в точке и на компакте
- •29 Частные и полное приращения фмп. Частные производные и
- •30 Полный дифференциал фмп. Использование в приближенных
- •31 Касательная плоскость и нормаль к поверхности
- •32 Производная по направлению. Градиент.
- •34 Второй дифференциал фмп как квадратичная форма от
- •35 Локальные экстремумы фмп. Необходимые условия экстремума.
- •36.Условные экстремумы фмп. Метод подстановки и метод Лагранжа.
- •37 Нахождение наибольшего и наименьшего значения функции в
- •38. Ду I порядка. Основные определения, понятия и теоремы
- •39. Точные ду. Критерий точного ду. Методы интегрирования
- •40. Уравнения с раздел-ся перем-ми. Однородные ду 1 порядка
- •41.Линейные ду первого порядка. Ду Бернули
- •42 Ду высшего порядка. Основные определения, понятия, теоремы
- •43 Ду высшего порядка, допускающие понижения порядка
- •44 Лоду высшего порядка. Свойства решений лоду. Теорема о
- •45. Линейная зависимость и независимость систем функций на
- •46. Лоду с постоянными коэффициентами. Метод Эйлера. Случаи простых действительных корней и кратных действительных корней характеристического уравнения
- •47. Лоду с постоянными коэффициентами. Метод Эйлера. Случай комплексно-сопряженных корней характеристического уравнения.
- •48. Лоду высшего порядка. Cтруктурa общего решения. Метод Лагранжа.
- •49. Лнду высшего порядка со специальной правой частью
- •50. Фигура и ее мера. Определение интеграла по фигуре. Частные случаи таких интегралов
- •51. Общие свойства интегралов по фигуре. Вычисление кри-1
- •52.Определение и вычисление кри-2. Механический смысл кри-2.
- •Скалярная форма кри-2
- •53.Двойной интеграл геом. И мех. Смысл. Вычисление
- •54.Тройной интеграл. Геометрический и механический смысл. Вычисление
- •Замена переменных в тройном интеграле.
53.Двойной интеграл геом. И мех. Смысл. Вычисление
Двойной интеграл - это обобщение определенного интеграла на двумерный случай. Т.е. для определения понятия двойного интеграла используется функция, зависящая уже от двух переменных: f(x,y). Эта функция должна быть определена на некоторой, обладающей конечной площадью, области D плоскости X0Y. При этом граница области D должна состоять из конечного числа графиков непрерывных функций. Обозначение двойного интеграла:
Геометрический
смысл двойного интеграла:
при неотрицательной функции f(x,y), двойной
интеграл по области D представляет из
себя объем криволинейного цилиндра,
который построен на области D и ограничен
сверху поверхностью z=f(x,y).
Механический
смысл двойного интеграла.Если
функции z=f(x,y)
есть плотность распределения массы по
плоскости, то двойной интеграл есть
м
асса
пластины.
Вычисление двойного интеграла.Теорема:Пусть
область D -
правильная в отношении оси Ох (рис.
2.6.)Тогда в этом случае область D может
быть задана одной системой неравенств:
Если
существует двойной интеграл
то его можно вычислить через повторный
кратный интеграл так:
При
этом внутренний интеграл по у находится
при постоянном х.
Данное представление (2.11) получается
из определения двойного интеграла при
специальном способе разбиения
области D на n "мелких"
частей (линиями, параллельными либо Ох,
либо Оу -
прямоугольной "шахматной" сеткой.
А затем выполняется суммирование
"объёмов" ΔVi сначала
по оси Оу,
а затем по оси Ох).
54.Тройной интеграл. Геометрический и механический смысл. Вычисление
Тройной интеграл.
:,
z меняется от поверхности до поверхности.
Замечание: Области более сложного вида надо разбить на области более простого вида. Проектирование области V можно производить и на другую плоскость.
Замена переменных в тройном интеграле.
,
где |I| - модуль Якобина.
Геометрический
смысл: |I|
-коэффициент растяжения объёма при
отображении области V
на область V’
В цилиндрических координатах:
В сферических координатах:
