
- •Системы отсчета. Характеристики механического движения: перемещение, скорость, ускорение.
- •Виды движения ( равномерное, равноускоренное) и их графическое описание. Движение по окружности с постоянной по модулю скоростью.
- •Взаимодействие тел.
- •7 Закон сохранения импульса и реактивное движение.
- •8. Импульс тела. Закон сохранения механической энергии.
- •9. Работа и мощность.
- •10 Механические колебания.
- •11 Амплитуда, период, частота, фаза колебаний.
- •12 Свободные и вынужденные колебания.
- •13 Резонанс. Механические волны.
- •14 Свойства механических волн.
- •15 Длина волны.
- •16. Звуковые волны.
- •17. Ультразвук и его использование в технике и медицине.
- •18. Молекулярная физика.
- •19. Термодинамика.
- •20. Основные положения молекулярно-кинетической теории.
- •21. Наблюдения и опыты, подтверждающие атомно-молекулярное строение вещества.
- •22. Масса и размеры молекул.
- •23. Тепловое движение.
- •24. Первое начало термодинамики и его применение к изопроцессам. Необратимость тепловых процессов. Тепловые двигатели и охрана окружающей среды. Кпд тепловых двигателей.
- •25. Парообразование и конденсация, испарение.
- •26. Процесс кипения жидкостей.
- •27. Влажность воздуха. Приборы для измерения влажности.
- •28. Характеристика жидкого состояния вещества.
- •29. Капиллярность. Капиллярные явления в природе и технике.
- •30. Характеристика твердого состояния вещества.
- •31. Плавление и кристаллизация.
- •32. Тепловое расширение тел.
- •33. Электрический разряд. Закон сохранения электрического заряда. Закон Кулона.
- •34. Электрическое поле. Напряженность поля. Потенциал поля. Разность потенциалов.
- •35. Линии напряженности электрического поля. Однородное электрическое поле.
- •36. Работа электрического поля при перемещении заряда.
- •37. Потенциал. Разность потенциалов. Напряжение.
- •38. Проводники в электрическом поле.
- •39. Диэлектрики в электрическом поле.
- •40. Электроёмкость проводников.
- •41. Принцип суперпозиции полей точечных зарядов.
- •42. Электрическая емкость. Конденсатор. Их устройство и применение.
- •43. Постоянный электрический ток.
- •44. Сила тока, напряжение, электрическое сопротивление. Закон Ома для участка цепи.
- •45. Последовательное и параллельное соединение проводников. Эдс источника тока.
- •46. Тепловое действие электрического тока.
- •47. Закон Джоуля- Ленца. Мощность электрического тока.
- •48. Полупроводники. Собственная и примесная проводимости полупроводников.
- •49. Полупроводниковый диод. Полупроводниковые приборы.
- •50. Магнитное поле.
- •51. Постоянные магниты и магнитное поле тока.
- •52. Сила Ампера. Принцип действия электродвигателя. Электроизмерительные приборы.
- •53. Индукция магнитного поля.
- •54. Магнитный поток. Явление электромагнитной индукции и закон электромагнитной индукции Фарадея.
- •55. Вихревое электрическое поле. Правило Ленца. Самоиндукция. Индуктивность.
- •56. Принцип действия электрогенератора.
- •57. Переменный ток.
- •58. Трансформатор. Производство, передача и потребление электроэнергии.
- •Электрообогрев и электроплиты:
- •Холодильные установки и кондиционеры:
- •Потребление бытовых и прочих устройств пользуйтесь энергосберегающим «спящим» режимом, если он есть в приборе или устройстве;
- •60. Колебательный контур. Свободные электромагнитные колебания.
- •61. Вынужденные электромагнитные колебания. Действующие значения силы тока и напряжения.
- •62. Конденсатор и катушка в цепи переменного тока. Активное сопротивление . Электрический резонанс. Конденсатор в цепи переменного тока
- •Катушка индуктивности в цепи переменного тока
- •63. Электромагнитное поле и электромагнитные волны. Распространение колебаний в упругой среде. Волны, их характеристики. Уравнение плоской волны, ее характеристики.
- •2. Электромагнитные волны. Предсказание электромагнитных волн
- •64. Скорость электромагнитных волн. Принципы радиосвязи и телевидения.
7 Закон сохранения импульса и реактивное движение.
Импульсом системы тел называется сумма векторов импульсов всех тел этой системы.Силы, действующие между телами системы, называются внутренними. Силы, характеризующие воздействие тел, не входящих в систему, на тела системы, называются внешними.
На основе второго и третьего законов Ньютона может быть доказан закон сохранения импульса системы тел: в инерциальной системе отсчета импульс системы тел остается неизменным, если на систему не действуют внешние силы.
Приближенно он выполняется и в случаях, когда внешние силы конечны, а процессы, происходящие в системе, являются быстрыми и вызваны большими внутренними силами (столкновение тел, взрыв, выстрел и т. п.). Кроме того, если сумма внешних сил не равна нулю, но проекция суммы внешних сил на выбранную ось равна нулю, то сохраняется проекция импульса системы на эту ось.
|
|
|
, где |
, где m1и m2 –
массы, |
, но
M |
Следует иметь в виду, что импульс тела – векторная физическая величина и его сохранение в случае равенства нулю суммы внешних сил означает выполнение векторного равенства. Например, при взаимодействии двух тел, движущихся в одной плоскости, это означает выполнение двух скалярных уравнений для проекций импульсов одновременно. Примером может служить нецентральный удар бильярдных шаров:
m1 1x + m2 2x = m1u1x + m2u2x
m1 1y + m2 2y = m1u1y + m2u2y
Реактивное движение – движение тела, возникающее при отделении от него с какой-либо скоростью некоторой его части. Если отделение частей тела происходит быстро, то для этих частей (осколки снаряда, ракета (рис. 3) и вылетающая порция продуктов сгорания топлива, тело медузы и порция выброшенной воды) выполняется закон сохранения импульса.
|
|||
|
|
|
|
|
|
|
8. Импульс тела. Закон сохранения механической энергии.
Импульс (Количество движения) — векторная физическая величина, характеризующая меру механического движения тела. В классической механике импульс тела равен произведению массы m этой точки на её скорость v, направление импульса совпадает с направлением вектора скорости: Закон сохранения импульса утверждает, что сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.. , при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил. находят применение при создании современной ракетно-космической техники. Движение с помощью реактивной струи по закону сохранения импульса лежит в основе гидрореактивного двигателя. В основе движения многих морских моллюсков (осьминогов, медуз, кальмаров, каракатиц) также лежит реактивный принцип.
Снова обратимся к простой системе тел, состоящей из земного шара и поднятого над Землей тела, например камня. Камень падает под действием силы тяжести. Силу сопротивления воздуха учитывать не будем. Работа, совершаемая силой тяжести при перемещении камня из одной точки в другую, равна изменению (увеличению) кинетической энергии камня:
В то же время эта работа равна уменьшению потенциальной энергии:
Работа силы всемирного тяготения, действующей со стороны камня на Землю, практически равна нулю. Из-за большой массы Земли ее перемещением и изменениемскорости можно пренебречь. Так как в формулах (6.24) и (6.25) левые части одинаковы, то равны и правые части:
Равенство (6.26) означает, что увеличение кинетической энергии системы равно убыли ее потенциальной энергии (или наоборот). Отсюда вытекает, что
или
Изменение суммы кинетической и потенциальной энергий системы равно нулю. Величину E, равную сумме кинетической и потенциальной энергий системы, называютмеханической энергией системы:
Так как изменение полной энергии системы в рассматриваемом случае согласно уравнению (6.27) равно нулю, то энергия остается постоянной:
Таким образом, в
изолированной системе, в которой
действуют консервативные силы,
механическая энергия сохраняется.
В этом состоит закон
сохранениямеханической энергии.
Энергия не создается и не уничтожается,
а только превращается из одной формы в
другую: из кинетической в потенциальную
и наоборот.
Учитывая, что в рассматриваемом конкретном
случае
и
,
можно закон сохранения механической
энергии записать так:
или
Это уравнение позволяет очень просто найти скорость камня v2 на любой высоте h2 над землей, если известна начальная скорость v1 камня на исходной высоте h1. Закон сохранения механической энергии (6.29) легко обобщается на случай любого числа тел и любых консервативных сил взаимодействия между ними. Под Eк нужно понимать сумму кинетических энергий всех тел, а под Еп - полную потенциальную энергию системы. Для системы, состоящей из тела массой m и пружины, закон сохранения механической энергии имеет вид
Полная механическая энергия системы равна сумме ее кинетической и потенциальной энергий. В изолированной системе, в которой действуют только консервативные силы, механическая энергия сохраняется.