
- •Классификация Радиоматериалов
- •Классификация пассивных Радиокомпонентов
- •Проводниковые материалы. Классификация и применение в ра.
- •Электропроводимость диэлектриков и ее особенности
- •Магнитотвердые материалы и их применения.
- •Сверхпроводимость и ее применение
- •Линейная и нелинейная зависимость поляризации диэлектриков от напряженности поля
- •Эмиссионные явления в проводниках. Материалы для катодов.
- •Диэлектрики и их классификация.
- •Электрическая проводимость проводников., ее зависимость от состава, наличия дефектов, деформации.
- •Металлы высокой проводимости и их применение на нч и вч. Зависимость от частоты сигнала.
- •Зависимость электрического сопротивления Диэлектриков от температуры.
- •Металлы и сплавы высокого сопротивления и их применение
- •Пробой диэлектриков.
- •Полупроводниковые материалы и их классификация.
- •Магнитомягкие материалы и их применение
- •Особенности приборов на полупроводниковых материалах.
- •Примесная и собственная проводимость п/п материалов.
- •Электрический и электротепловой пробой в твердых диэлектриках.
- •Потери энергии в диэлектриках. Механизмы потерь в переменных и постоянных электрических полях.
- •Зависимость тангенса угла диэлектрических потерь диэлектриков от температуры, напряженности и частоты электрического поля.
- •3. Диэлектрические потери
- •3.4. Релаксационные потери
- •Магнитная проницаемость и ее зависимость от температуры и частоты поля.
- •Магнитомягкие материалы для вч и нч.
- •Материалы для резистроов, оценка их качества.
- •Материалы для печатных плат и подложек. Особенности применения на вч и нч.
- •Композитные проводниковые материалы.
- •Диэлектрики для конденсаторов, оценка их качества.
- •Конденсаторы, назначение требования, классификация, маркировка.
- •Резисторы, требования к ним, маркировка.
- •Конденсаторы для вч
- •Вариконды и их характеристики
- •Катушки индуктивности, их классификация и применение.
- •Трансформаторы, их классификация и применение.
- •Виды трансформаторов: Силовой трансформатор
- •Автотрансформатор
- •Трансформатор тока
- •Трансформатор напряжения
- •Импульсный трансформатор
- •Разделительный трансформатор
- •Согласующий трансформатор
- •Сдвоенный дроссель
- •Трансфлюксор
- •Применение в электросетях:
- •Применение в источниках электропитания:
- •Прецизионные резисторы.
- •Резисторы на основе композиционных материалов. Их достоинства и недостатки.
- •Пленочные сигнальные проводники. Зависимость r от толщины пленки.
- •Контактные явления в проводниках. Термопары.
- •Теплопроводность проводников и ее связь с электропроводностью.
- •Контактные явления в полупроводниках. Омические и вентильные контакты.
- •Ферромагнитные состояния в материалах и их намагничиваемость.
- •Начальная и максимальная магнитная пронициаемость.
- •Терморезисторы, позисторы.
- •Электретные диэлектрики, микрофоны.
- •Принцип действия гомоэлектретного микрофона
- •Принцип действия гетероэлектретного микрофона
- •Пьезоэлектрики, применение в электронике.
- •Конструкционные материалы. Керамика и стекла
- •Конструкционные материалы: Металлы, сплавы, полимеры.
- •Строение материалов. Виды связи. Проводники, полупроводники, диэлектрики.
- •Зонная теория твердого тела. Проводники, полупроводники, диэлектрики.
- •Физическая сущность электропроводности материалов. Типы носителей зарядов. Длина свободного пробега
- •Пассивные rlc колебательные контура в радиоаппаратуре.
- •Конденсаторы с большой удельной емкостью.
Контактные явления в проводниках. Термопары.
При соприкосновении двух разных разнородных металлов между ними возникает разность потенциалов. Это объясняется разными уровнями энергии электронов, т.е. различной работой выхода. Поэтому при контактировании металлов происходит переход электронов из области с большим значением энергии в область, где эта энергия меньше. В результате металл А заряжается положительно, а металл Б – отрицательно. Возникающая контактная разность потенциалов составляет от десятых долей до нескольких вольт. Обычно электрический потенциал контакта не влияет на прохождение электрического тока. Контактные явления используются для создания термопар.
Термопа́ра (термоэлектрический преобразователь температуры) — термоэлемент, применяемый в измерительных и преобразовательных устройствах, а также в системахавтоматизации.
Международный стандарт на термопары МЭК 60584 (п.2.2) дает следующее определение термопары: Термопара — пара проводников из различных материалов, соединенных на одном конце и формирующих часть устройства, использующего термоэлектрический эффект для измерения температуры.
Для измерения разности температур зон, ни в одной из которых не находится вторичный преобразователь (измеритель термо-ЭДС), удобно использовать дифференциальную термопару: две одинаковых термопары, соединенных навстречу друг другу. Каждая из них измеряет перепад температур между своим рабочим спаем и условным спаем, образованным концами термопар, подключёнными к клеммам вторичного преобразователя, но вторичный преобразователь измеряет разность их сигналов, таким образом, две термопары вместе измеряют перепад температур между своими рабочими спаями.
Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Между соединёнными проводниками имеется контактная разность потенциалов; если стыки связанных в кольцо проводников находятся при одинаковой температуре, сумма таких разностей потенциалов равна нулю. Когда же стыки находятся при разных температурах, разность потенциалов между ними зависит от разности температур. Коэффициент пропорциональности в этой зависимости называют коэффициентом термо-ЭДС. У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различная. Помещая спай из металлов с отличными коэффициентами термо-ЭДС в среду с температурой Т1, мы получим напряжение между противоположными контактами, находящимися при другой температуре Т2, которое будет пропорционально разности температур Т1 и Т2.
Теплопроводность проводников и ее связь с электропроводностью.
Теплопроводность – это передача теплоты, протекающая при наличии градиента температуры и обусловленная тепловым движением частиц.
Коэффициент теплопроводности численно равен количеству теплоты, переносимому через единицу площади поверхности за единицу времени при единичном градиенте температуры
Теплопроводность вещества зависит от его состояния
Если в твердом теле существует разность температур между различными его частями, то подобно тому, как это происходит в газах и жидкостях, тепло переносится от более нагретой к менее нагретой части.
В отличие от жидкостей и газов, в твердом теле не может возникнуть конвекция, т. е. перемещения массы вещества вместе с теплом. Поэтому перенос тепла в твердом теле осуществляется только теплопроводностью.
Механизм переноса тепла в твердом теле вытекает из характера тепловых движений в нем. Твердое тело представляет собой совокупность атомов, совершающих колебания. Но колебания эти не
независимы друг от друга. Колебания могут передаваться (со скоростью звука) от одних атомов к другим. При этом образуется волна, которая и переносит энергию колебаний. Таким распространением колебаний и осуществляется перенос тепла.
Связь коэффициента
теплопроводности
с удельной
электрической проводимостью
в
металлах устанавливает закон
Видемана — Франца:
где
— постоянная
Больцмана,
—
заряд электрона.