
- •Классификация Радиоматериалов
- •Классификация пассивных Радиокомпонентов
- •Проводниковые материалы. Классификация и применение в ра.
- •Электропроводимость диэлектриков и ее особенности
- •Магнитотвердые материалы и их применения.
- •Сверхпроводимость и ее применение
- •Линейная и нелинейная зависимость поляризации диэлектриков от напряженности поля
- •Эмиссионные явления в проводниках. Материалы для катодов.
- •Диэлектрики и их классификация.
- •Электрическая проводимость проводников., ее зависимость от состава, наличия дефектов, деформации.
- •Металлы высокой проводимости и их применение на нч и вч. Зависимость от частоты сигнала.
- •Зависимость электрического сопротивления Диэлектриков от температуры.
- •Металлы и сплавы высокого сопротивления и их применение
- •Пробой диэлектриков.
- •Полупроводниковые материалы и их классификация.
- •Магнитомягкие материалы и их применение
- •Особенности приборов на полупроводниковых материалах.
- •Примесная и собственная проводимость п/п материалов.
- •Электрический и электротепловой пробой в твердых диэлектриках.
- •Потери энергии в диэлектриках. Механизмы потерь в переменных и постоянных электрических полях.
- •Зависимость тангенса угла диэлектрических потерь диэлектриков от температуры, напряженности и частоты электрического поля.
- •3. Диэлектрические потери
- •3.4. Релаксационные потери
- •Магнитная проницаемость и ее зависимость от температуры и частоты поля.
- •Магнитомягкие материалы для вч и нч.
- •Материалы для резистроов, оценка их качества.
- •Материалы для печатных плат и подложек. Особенности применения на вч и нч.
- •Композитные проводниковые материалы.
- •Диэлектрики для конденсаторов, оценка их качества.
- •Конденсаторы, назначение требования, классификация, маркировка.
- •Резисторы, требования к ним, маркировка.
- •Конденсаторы для вч
- •Вариконды и их характеристики
- •Катушки индуктивности, их классификация и применение.
- •Трансформаторы, их классификация и применение.
- •Виды трансформаторов: Силовой трансформатор
- •Автотрансформатор
- •Трансформатор тока
- •Трансформатор напряжения
- •Импульсный трансформатор
- •Разделительный трансформатор
- •Согласующий трансформатор
- •Сдвоенный дроссель
- •Трансфлюксор
- •Применение в электросетях:
- •Применение в источниках электропитания:
- •Прецизионные резисторы.
- •Резисторы на основе композиционных материалов. Их достоинства и недостатки.
- •Пленочные сигнальные проводники. Зависимость r от толщины пленки.
- •Контактные явления в проводниках. Термопары.
- •Теплопроводность проводников и ее связь с электропроводностью.
- •Контактные явления в полупроводниках. Омические и вентильные контакты.
- •Ферромагнитные состояния в материалах и их намагничиваемость.
- •Начальная и максимальная магнитная пронициаемость.
- •Терморезисторы, позисторы.
- •Электретные диэлектрики, микрофоны.
- •Принцип действия гомоэлектретного микрофона
- •Принцип действия гетероэлектретного микрофона
- •Пьезоэлектрики, применение в электронике.
- •Конструкционные материалы. Керамика и стекла
- •Конструкционные материалы: Металлы, сплавы, полимеры.
- •Строение материалов. Виды связи. Проводники, полупроводники, диэлектрики.
- •Зонная теория твердого тела. Проводники, полупроводники, диэлектрики.
- •Физическая сущность электропроводности материалов. Типы носителей зарядов. Длина свободного пробега
- •Пассивные rlc колебательные контура в радиоаппаратуре.
- •Конденсаторы с большой удельной емкостью.
Трансформатор напряжения
Трансформатор напряжения — трансформатор, питающийся от источника напряжения. Типичное применение — преобразование высокого напряжения в низкое в цепях, в измерительных цепях и цепях РЗиА. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения.
Импульсный трансформатор
Импульсный трансформатор — это трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса[12]. Основное применение заключается в передаче прямоугольного электрического импульса (максимально крутой фронт и срез, относительно постоянная амплитуда). Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. В большинстве случаев основное требование, предъявляемое к ИТ заключается в неискажённой передаче формы трансформируемых импульсов напряжения; при воздействии на вход ИТ напряжения той или иной формы на выходе желательно получить импульс напряжения той же самой формы, но, быть может, иной амплитуды или другой полярности.
Разделительный трансформатор
Разделительный трансформатор — трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками. Силовые разделительные трансформаторы предназначены для повышения безопасности электросетей, при случайных одновременных прикасаниях к земле и токоведущим частям или нетоковедущим частям, которые могут оказаться под напряжением в случае повреждения изоляции.[13]Сигнальные разделительные трансформаторы обеспечивают гальваническую развязку электрических цепей.
Согласующий трансформатор
Согласующий трансформатор — трансформатор, применяемый для согласования сопротивления различных частей (каскадов) электронных схем при минимальном искажении формы сигнала. Одновременно согласующий трансформатор обеспечивает создание гальванической развязки между участками схем.
Пик-трансформатор
Пик-трансформатор — трансформатор, преобразующий напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью.
Сдвоенный дроссель
Сдвоенный дроссель (встречный индуктивный фильтр) — конструктивно является трансформатором с двумя одинаковыми обмотками. Благодаря взаимной индукции катушек он при тех же размерах более эффективен, чем обычный дроссель. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.
Трансфлюксор
Трансфлюксор — разновидность трансформатора, используемая для хранения информации[14][15]. Основное отличие от обычного трансформатора — это большая величина остаточной намагниченности магнитопровода. Иными словами трансфлюксоры могут выполнять роль элементов памяти. Помимо этого трансфлюксоры часто снабжались дополнительными обмотками, обеспечивающими начальное намагничивание и задающими режимы их работы. Эта особенность позволяла (в сочетании с другими элементами) строить на трансфлюксорах схемы управляемых генераторов, элементов сравнения и искусственных нейронов.