Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
el_teh.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
528.9 Кб
Скачать
  1. Старение изоляционных материалов под действием напряжения.

Электротехнические материалы

Электротехнические материалы представляют собой совокупность проводниковых, электроизоляционных, магнитных и полупроводниковых материалов, предназначенных для работы в электрических и магнитных полях. Сюда же можно отнести основные электротехнические изделия: изоляторы, конденсаторы, провода и некоторые полупроводниковые элементы. Электротехнические материалы в современной электротехнике занимают одно из главных мест. Всем известно, что надежность работы электрических машин, аппаратов и электрических установок в основном зависит от качества и правильного выбора соответствующих электротехнических материалов. Анализ аварий электрических машин и аппаратов показывает, что большинство из них происходит вследствие выхода из строя электроизоляции, состоящей из электроизоляционных материалов.

Не менее важное значение для электротехники имеют магнитные материалы. Потери энергии и габариты электрических машин и трансформаторов определяются свойствами магнитных материалов. Довольно значительное место занимают в электротехнике полупроводниковые материалы, или полупроводники. В результате разработки и изучения данной группы материалов были созданы различные новые приборы, позволяющие успешно решать некоторые проблемы электротехники.

При рациональном выборе электроизоляционных, магнитных и других материалов можно создать надежное в эксплуатации электрооборудование при малых габаритах и весе. Но для реализации этих качеств необходимы знания свойств всех групп электротехнических материалов.

Проводниковые материалы

К этой группе материалов относятся металлы и их сплавы. Чистые металлы имеют малое удельное сопротивление. Исключением является ртуть, у которой удельное сопротивление довольно высокое. Сплавы также обладают высоким удельным сопротивлением. Чистые металлы применяются при изготовлении обмоточных и монтажных проводов, кабелей и пр. Проводниковые сплавы в виде проволоки и лент используются в реостатах, потенциометрах, добавочных сопротивлениях и т. д.

В подгруппе сплавов с высоким удельным сопротивлением выделяют группу жароупорных проводниковых материалов, стойких к окислению при высоких температурах. Жароупорные, или жаростойкие, проводниковые сплавы применяются в электронагревательных приборах и реостатах. Кроме малого удельного сопротивления, чистые металлы обладают хорошей пластичностью, т. е. могут вытягиваться в тонкую проволоку, в ленты и прокатываться в фольгу толщиной менее 0,01 мм. Сплавы металлов имеют меньшую пластичность, но более упруги и устойчивы механически. Характерной особенностью всех металлических проводниковых материалов является их электронная электропроводность. Удельное сопротивление всех металлических проводников увеличивается с ростом температуры, а также в результате механической обработки, вызывающей остаточную деформацию в металле.

Прокатку или волочение используют в том случае, когда нужно получить проводниковые материалы с повышенной механической прочностью, например при изготовлении проводов воздушных линий, троллейных проводов и пр. Чтобы вернуть деформированным металлическим проводникам прежнюю величину удельного сопротивления, их подвергают термической обработке — отжигу без доступа кислорода.

Электроизоляционные материалы

Электроизоляционными материалами, или диэлектриками, называют такие материалы, с помощью которых осуществляют изоляцию, т. е. препятствуют утечке электрического тока между какими-либо токопроводящими частями, находящимися под разными электрическими потенциалами. Диэлектрики имеют очень большое электрическое сопротивление. По химическому составу диэлектрики делят на органические и неорганические. Основным элементов в молекулах всех органических диэлектриков является углерод. В неорганических диэлектриках углерода нет. Наибольшей нагревостойкостью обладают неорганические диэлектрики (слюда, керамика и др.).

По способу получения различают естественные (природные) и синтетические диэлектрики. Синтетические диэлектрики могут быть созданы с заданным комплексом электрических и физико-химических свойств, поэтому они широко применяются в электротехнике.

По строению молекул диэлектрики делят на неполярные (нейтральные) и полярные. Нейтральные диэлектрики состоят из электрически нейтральных атомов и молекул, которые до воздействия на них электрического поля не обладают электрическими свойствами. Нейтральными диэлектриками являются: полиэтилен, фторопласт-4 и др. Среди нейтральных выделяют ионные кристаллические диэлектрики (слюда, кварц и др.), в которых каждая пара ионов составляет электрически нейтральную частицу. Ионы располагаются в узлах кристаллической решетки. Каждый ион находится в колебательном тепловом движении около центра равновесия — узла кристаллической решетки. Полярные, или дипольные, диэлектрики состоят из полярных молекул-диполей. Последние вследствие асимметрии своего строения обладают начальным электрическим моментом еще до воздействия на них силы электрического поля. К полярным диэлектрикам относятся бакелит, поливинилхлорид и др. По сравнению с нейтральными диэлектриками полярные имеют более высокие значения диэлектрической проницаемости, а также немного повышенную проводимость.

По агрегатному состоянию диэлектрики бывают газообразными, жидкими и твердыми. Самой большой является группа твердых диэлектриков. Электрические свойства электроизоляционных материалов оценивают с помощью величин, называемых электрическими характеристиками. К ним относятся: удельное объемное сопротивление, удельное поверхностное сопротивление, диэлектрическая проницаемость, температурный коэффициент диэлектрической проницаемости, тангенс угла диэлектрических потерь и электрическая прочность материала.

Удельное объемное сопротивление — величина, дающая возможность оценить электрическое сопротивление материала при протекании через него постоянного тока. Величина, обратная удельному объемному сопротивлению, называется удельной объемной проводимостью. Удельное поверхностное сопротивление — величина, позволяющая оценить электрическое сопротивление материала при протекании постоянного тока по его поверхности между электродами. Величина, обратная удельному поверхностному сопротивлению, называется удельной поверхностной проводимостью.

Температурный коэффициент удельного электрического сопротивления — величина, определяющая изменение удельного сопротивления материала с изменением его температуры. С повышением температуры у всех диэлектриков электрическое сопротивление уменьшается, следовательно, их температурный коэффициент удельного сопротивления имеет отрицательный знак. Диэлектрическая проницаемость — величина, позволяющая оценить способность материала создавать электрическую емкость. Относительная диэлектрическая проницаемость входит в величину абсолютной диэлектрической проницаемости. Температурный коэффициент диэлектрической проницаемости — величина, дающая возможность оценить характер изменения диэлектрической проницаемости, а следовательно, и емкости изоляции с изменением температуры. Тангенс угла диэлектрических потерь — величина, определяющая потери мощности в диэлектрике, работающем при переменном напряжении.

Электрическая прочность — величина, позволяющая оценить способность диэлектрика противостоять разрушению его электрическим напряжением. Механическая прочность электроизоляционных и других материалов оценивается при помощи следующих характеристик: предел прочности материала при растяжении, относительное удлинение при растяжении, предел прочности материала при сжатии, предел прочности материала при статическом изгибе, удельная ударная вязкость, сопротивление раскалыванию.

К физико-химическим характеристикам диэлектриков относятся: кислотное число, вязкость, водопоглощаемость. Кислотное число — это количество миллиграммов едкого калия, необходимое для нейтрализации свободных кислот, содержащихся в 1 г диэлектрика. Кислотное число определяется у жидких диэлектриков, компаундов и лаков. Эта величина позволяет оценить количество свободных кислот в диэлектрике, а значит, степень их воздействия на органические материалы. Наличие свободных кислот ухудшает электроизоляционные свойства диэлектриков. Вязкость, или коэффициент внутреннего трения, дает возможность оценить текучесть электроизоляционных жидкостей (масел, лаков и др.). Вязкость бывает кинематической и условной. Водопоглощаемость — это количество воды, поглощенной диэлектриком после пребывания его в дистиллированной воде в течение суток при температуре 20° С и выше. Величина водопоглощаемости указывает на пористость материала и наличие в нем водорастворимых веществ. С увеличением этого показателя электроизоляционные свойства диэлектриков ухудшаются.

К тепловым характеристикам диэлектриков относятся: температура плавления, температура размягчения, температура каплепадения, температура вспышки паров, теплостойкость пластмасс, термоэластичность (теплостойкость) лаков, нагревостойкость, морозостойкость, тропикостойкость.

Большое применение в электротехнике получили пленочные электроизоляционные материалы, изготавливаемые из полимеров. К ним относятся пленки и ленты. Пленки выпускают толщиной 5—250 мкм, а ленты — 0,2—3,0 мм. Высокополимерные пленки и ленты отличаются большой гибкостью, механической прочностью и хорошими электроизоляционными свойствами. Полистирольные пленки выпускают толщиной 20—100 мкм и шириной 8—250 мм. Толщина полиэтиленовых пленок обычно составляет 30—200 мкм, а ширина 230—1500 мм. Пленки из фторопласта-4 изготавливают толщиной 5—40 мкм и шириной 10—200 мм. Также из этого материала выпускают неориентированные и ориентированные пленки. Наиболее высокими механическими и электрическими характеристиками обладают ориентированные фторопластовые пленки.

Полиэтилентерефталатные (лавсановые) пленки выпускают толщиной 25—100 мкм и шириной 50—650 мм. Полихлорвиниловые пленки изготавливают из винипласта и из пластифицированного полихлорвинила. Большей механической прочностью, но меньшей гибкостью обладают пленки из винипласта. Пленки из винипласта имеют толщину 100 мкм и более, а пленки из пластифицированного полихлорвинила — 20—200 мкм. Триацетатцеллюлозные (триацетатные) пленки изготавливают непластифицированными (жесткими), окрашенными в голубой цвет, слабопластифицированными (бесцветными) и пластифицированными (окрашенными в синий цвет). Последние обладают значительной гибкостью. Триацетатные пленки выпускают толщиной 25, 40 и 70 мкм и шириной 500 мм. Пленкоэлектрокартон — гибкий электроизоляционный материал, состоящий из изоляционного картона, оклеенного с одной стороны лавсановой пленкой. Пленкоэлектрокартон на лавсановой пленке имеет толщину 0,27 и 0,32 мм. Его выпускают в рулонах шириной 500 мм. Пленкоасбестокартон — гибкий электроизоляционный материал, состоящий из лавсановой пленки толщиной 50 мкм, оклеенной с двух сторон асбестовой бумагой толщиной 0,12 мм. Пленкоасбестокартон выпускают в листах 400 х 400 мм (не менее) толщиной 0,3 мм.

Электроизоляционные лаки и эмали

Лаки — это растворы пленкообразующих веществ: смол, битумов, высыхающих масел, эфиров целлюлозы или композиций этих материалов в органических растворителях. В процессе сушки лака из него испаряются растворители, а в лаковой основе происходят физико-химические процессы, приводящие к образованию лаковой пленки. По своему назначению электроизоляционные лаки делят на пропиточные, покровные и клеящие.

Пропиточные лаки применяются для пропитки обмоток электрических машин и аппаратов с целью закрепления их витков, увеличения коэффициента теплопроводности обмоток и повышения их влагостойкости. Покровные лаки позволяют создать защитные влагостойкие, маслостойкие и другие покрытия на поверхности обмоток или пластмассовых и других изоляционных деталей. Клеящие лаки предназначаются для склеивания листочков слюды друг с другом или с бумагой и тканями с целью получения слюдяных электроизоляционных материалов (миканиты, микалента и др.).

Эмали представляют собой лаки с введенными в них пигментами — неорганическими наполнителями (окись цинка, двуокись титана, железный сурик и др.). Пигменты вводятся с целью повышения твердости, механической прочности, влагостойкости, дутостойкости и других свойств эмалевых пленок. Эмали относятся к покровным материалам.

По способу сушки различают лаки и эмали горячей (печной) и холодной (воздушной) сушки. Первые требуют для своего отверждения высокой температуры — от 80 до 200° С, а вторые высыхают при комнатной температуре. Лаки и эмали горячей сушки, как правило, обладают более высокими диэлектрическими, механическими и другими свойствами. С целью улучшения характеристик лаков и эмалей воздушной сушки, а также для ускорения отверждения их сушку иногда производят при повышенных температурах — от 40 до 80° С.

Основные группы лаков имеют следующие особенности. Масляные лаки образуют после высыхания гибкие эластичные пленки желтого цвета, стойкие к влаге и к нагретому минеральному маслу. По нагревостойкости пленки этих лаков относятся к классу А. В масляных лаках используют дефицитные льняное и тунговое масла, поэтому они заменяются лаками на синтетических смолах, более стойкими к тепловому старению.

Масляно-битумные лаки образуют гибкие пленки черного цвета, стойкие к влаге, но легко растворяющиеся в минеральных маслах (трансформаторное и смазочное). По нагревостойкости эти лаки относятся к классу А (105° С). Глифталевые и масляно-глифталевые лаки и эмали отличаются хорошей клеящей способностью по отношению к слюде, бумагам, тканям и пластмассам. Пленки этих лаков обладают повышенной нагревостойкостью (класс В). Они устойчивы к нагретому минеральному маслу, но требуют горячей сушки при температурах 120—130° С. Чисто глифталевые лаки на основе немодифицированных глифталевых смол образуют твердые негибкие пленки, применяемые в производстве твердой слюдяной изоляции (твердые миканиты). Масляно-глифталевые лаки после высыхания дают гибкие эластичные пленки желтого цвета.

Кремнийорганические лаки и эмали отличаются высокой нагревостойкостью и могут длительно работать при 180—200° С, поэтому они применяются в сочетании со стекловолокнистой и слюдяной изоляцией. Кроме этого, пленки обладают высокой влагостойкостью и стойкостью к электрическим искрам.

Лаки и эмали на основе полихлорвиниловых и перхлорвиниловых смол отличаются стойкостью к воде, нагретым маслам, кислым и щелочным химическим реагентам, поэтому они применяются в качестве покровных лаков и эмалей для защиты обмоток, а также металлических деталей от коррозии. Следует обратить внимание на слабое прилипание полихлорвиниловых и перхлорвиниловых лаков и эмалей к металлам. Последние вначале покрывают слоем грунта, а затем лаком или эмалью на основе полихлорвиниловых смол. Сушка этих лаков и эмалей производится при 20, а также при 50—60° С. К недостаткам такого рода покрытий относится их невысокая рабочая температура, составляющая 60—70° С.

Лаки и эмали на основе эпоксидных смол отличаются высокой клеящей способностью и несколько повышенной нагревостойкостью (до 130° С). Лаки на основе алкидных и фенольных смол (фенолоалкидные лаки) имеют хорошую высыхаемость в толстых слоях и образуют эластичные пленки, могущие длительно работать при температурах 120—130° С. Пленки этих лаков обладают влаго- и маслостойкостью.

Водно-эмульсионные лаки — это устойчивые эмульсии лаковых основ в водопроводной воде. Лаковые основы производят из синтетических смол, а также из высыхающих масел и их смесей. Водно-эмульсионные лаки пожаро- и взрывобезопасны, потому что в их составе нет легковоспламеняющихся органических растворителей. Из-за малой вязкости такие лаки имеют хорошую пропитывающую способность. Их применяют для пропитки неподвижных и подвижных обмоток электрических машин и аппаратов, длительно работающих при температурах до 105° С.

Электроизоляционные компаунды

Компаунды представляют собой изоляционные составы, которые в момент использования бывают жидкими, а затем отвердевают. Компаунды не имеют в своем составе растворителей. По своему назначению данные составы делятся на пропиточные и заливочные. Первые из них применяют для пропитки обмоток электрических машин и аппаратов, вторые — для заливки полостей в кабельных муфтах, а также в электромашинах и приборах с целью герметизации.

Компаунды бывают термореактивными (не размягчающимися после отвердевания) и термопластичными (размягчающимися при последующих нагревах). К термореактивным можно отнести компаунды на основе эпоксидных, полиэфирных и некоторых других смол. К термопластичным относятся компаунды на основе битумов, воскообразных диэлектриков и термопластичных полимеров (полистирол, полиизобутилен и др.). Пропиточные и заливочные компаунды на основе битумов по нагревостойкости относятся к классу А (105° С), а некоторые к классу Y (до 90° С). Наибольшей нагревостойкостыо обладают компаунды эпоксидные и кремнийорганические.

Компаунды МБК изготовляют на основе метакриловых эфиров и применяют как пропиточные и заливочные. Они после отвердевания при 70—100° С (а со специальными отвердителями при 20° С) являются термореактивными веществами, которые могут использоваться в интервале температур от —55 до +105° С.

Непропитанные волокнистые электроизоляционные материалы

К этой группе относятся листовые и рулонные материалы, состоящие из волокон органического и неорганического происхождения. Волокнистые материалы органического происхождения (бумага, картон, фибра и ткань) получают из растительных волокон древесины, хлопка и натурального шелка. Нормальная влажность электроизоляционных картонов, бумаги и фибры колеблется от 6 до 10%. Волокнистые органические материалы на основе синтетических волокон (капрон) обладают влажностью от 3 до 5%. Такая же примерно влажность наблюдается у материалов, получаемых на основе неорганических волокон (асбест, стекловолокно). Характерными особенностями неорганических волокнистых материалов являются их негорючесть и высокая нагревостойкость (класс С). Эти ценные свойства в большинстве случаев снижаются при пропитке этих материалов лаками.

Электроизоляционную бумагу изготавливают обычно из древесной целлюлозы. Наибольшую пористость имеет микалентная бумага, применяемая в производстве слюдяных лент. Электрокартон изготавливают из древесной целлюлозы или из смеси хлопчатобумажных волокон и волокон древесной (сульфатной) целлюлозы, взятых в различных соотношениях. Увеличение содержания хлопчатобумажных волокон снижает гигроскопичность и усадку картона. Электрокартон, предназначенный для работы в воздушной среде, имеет более плотную структуру по сравнению с картоном, предназначенным для работы в масле. Картон толщиной 0,1—0,8 мм выпускают в рулонах, а картон толщиной от 1 мм и выше — в листах различных размеров.

Фибра представляет собой монолитный материал, получаемый в результате прессования листов бумаги, предварительно обработанных нагретым раствором хлористого цинка и отмытых в воде. Фибра поддается всем видам механической обработки и формованию после размачивания ее заготовок в горячей воде.

Летероид — тонкая листовая и рулонная фибра, используемая для изготовления различного вида электроизоляционных прокладок, шайб и фасонных изделий.

Асбестовые бумаги, картоны и ленты изготавливаются из волокон хризотилового асбеста, обладающего наибольшей эластичностью и способностью скручиваться в нити. Все асбестовые материалы стойки к щелочам, но легко разрушаются кислотами.

Электроизоляционные стеклянные ленты и ткани производят из стеклянных нитей, получаемых из бесщелочных или малощелочных стекол. Преимущество стеклянных волокон перед растительными и асбестовыми состоит в их гладкой поверхности, понижающей поглощение влаги из воздуха. Нагревостойкость стеклянных тканей и лент выше асбестовых.

Электроизоляционные лакированные ткани (лакоткани)

Лакированные ткани представляют собой гибкие материалы, состоящие из ткани, пропитанной лаком или каким-либо электроизоляционным составом. Пропиточный лак или состав после отвердевания образует гибкую пленку, которая обеспечивает хорошие электроизоляционные свойства лакоткани. В зависимости от тканевой основы лакоткани делятся на хлопчатобумажные, шелковые, капроновые и стеклянные (стеклоткани).

В качестве пропиточных составов для лакотканей применяют масляные, масляно-битумные, эскапоновые и кремнийорганические лаки, а также кремнийорганические эмали, растворы кремнийорганических каучуков и др. Наибольшей растяжимостью и гибкостью обладают шелковые и капроновые лакоткани. Они могут работать при нагреве не выше 105° С (класс А). К этому же классу нагревостойкости относятся все хлопчатобумажные лакоткани.

Основными областями применения лакотканей являются: электрические машины, аппараты и приборы низкого напряжения. Лакоткани используют для гибкой витковой и пазовой изоляции, а также в качестве различных электроизоляционных прокладок.

Пластические массы

Пластическими массами (пластмассами) называются твердые материалы, которые на определенной стадии изготовления приобретают пластические свойства и в этом состоянии из них могут быть получены изделия заданной формы. Данные материалы представляют собой композиционные вещества, состоящие из связующего вещества, наполнителей, красителей, пластифицирующих и других компонентов. Исходными материалами для получения пластмассовых изделий являются прессовочные порошки и прессовочные материалы. По нагревостойкости пластмассы бывают термореактивные и термопластичные.

Слоистые электроизоляционные пластмассы

Слоистые пластмассы — материалы, состоящие из чередующихся слоев листового наполнителя (бумага или ткань) и связующего. Важнейшими из слоистых электроизоляционных пластмасс являются гетинакс, текстолит и стеклотекстолит. Они состоят из листовых наполнителей, располагающихся слоями, а в качестве связующего вещества использованы бакелитовые, эпоксидные, кремнийорганические смолы и их композиции.

В качестве наполнителей применяют специальные сорта пропиточной бумаги (в гетинаксе), хлопчатобумажные ткани (в текстолите) и бесщелочные стеклянные ткани (в стеклотекстолите). Перечисленные наполнители сначала пропитывают бакелитовыми или кремнийорганическими лаками, сушат и режут на листы определенного размера. Подготовленные листовые наполнители собирают в пакеты заданной толщины и подвергают горячему прессованию, в процессе которого отдельные листы при помощи смол прочно соединяются друг с другом.

Гетинакс и текстолит устойчивы к минеральным маслам, поэтому широко используются в маслонаполненных электроаппаратах и трансформаторах. Наиболее дешевым слоистым материалом является древесно-слоистая пластмасса (дельта-древесина). Она получается горячим прессованием тонких листов березового шпона, предварительно пропитанных бакелитовыми смолами. Дельта-древесина применяется для изготовления силовых конструкционных и электроизоляционных деталей, работающих в масле. Для работы на открытом воздухе этот материал нуждается в тщательной защите от влаги.

Асбестотекстолит представляет собой слоистую электроизоляционную пластмассу, получаемую горячим прессованием листов асбестовой ткани, предварительно пропитанных бакелитовой смолой. Его выпускают в виде фасонных изделий, а также в виде листов и плит толщиной от 6 до 60 мм. Асбогетинакс — слоистая пластмасса, получаемая горячим прессованием листов асбестовой бумаги, содержащей 20% сульфатной целлюлозы или асбестовой бумаги без целлюлозы, пропитанных эпоксидно-фенолоформальдегидным связующим.

Из рассмотренных слоистых электроизоляционных материалов наибольшей нагревостойкостью, лучшими электрическими и механическими характеристиками, повышенной влагостойкостью и стойкостью к грибковой плесени обладают стеклотекстолиты на кремнийорганических и эпоксидных связующих.

Намотанные электроизоляционные изделия

Намотанные электроизоляционные изделия представляют собой твердые трубки и цилиндры, изготовленные методом намотки на металлические круглые стержни каких-либо волокнистых материалов, предварительно пропитанных связующим веществом. В качестве волокнистых материалов применяют специальные сорта намоточных или пропиточных бумаг, а также хлопчатобумажные ткани и стеклоткани. Связующими веществами являются бакелитовые, эпоксидные, кремнийорганические и другие смолы.

Намотанные электроизоляционные изделия вместе с металлическими стержнями, на которые они намотаны, сушат при высокой температуре. С целью гигроскопичности намотанных изделий их лакируют. Каждый слой лака сушат в печи. К намотанным изделиям можно отнести и сплошные текстолитовые стержни, потому что их тоже получают путем намотки заготовок из текстильного наполнителя, пропитанного бакелитовым лаком. После этого заготовки подвергают горячему прессованию в стальных пресс-формах. Намотанные электроизоляционные изделия применяют в трансформаторах с воздушной и масляной изоляцией, в воздушных и масляных выключателях, различных электроаппаратах и узлах электрооборудования.

Минеральные электроизоляционные материалы

К минеральным электроизоляционным материалам относятся горные породы: слюда, мрамор, шифер, талькохлорит и базальт. Также к этой группе относятся материалы, получаемые из портландцемента и асбеста (асбестоцемент и асбопласт). Вся эта группа неорганических диэлектриков отличается высокой стойкостью к электрической дуге и обладает достаточно высокими механическими характеристиками. Минеральные диэлектрики (кроме слюды и базальта) поддаются механической обработке, за исключением нарезания резьбы.

Электроизоляционные изделия из мрамора, шифера и талькохлорита получают в виде досок для панелей и электроизоляционных оснований для рубильников и переключателей низкого напряжения. Точно такие же изделия из плавленого базальта можно получить только методом литья в формы. Чтобы базальтовые изделия обладали необходимыми механическими и электрическими характеристиками, их подвергают термической обработке с целью образования в материале кристаллической фазы.

Электроизоляционные изделия из асбестоцемента и асбопласта представляют собой доски, основания, перегородки и дугогасительные камеры. Для изготовления такого рода изделий используют смесь, состоящую из портландцемента и асбестового волокна. Изделия из асбопласта получают холодным прессованием из массы, в которую добавлено 15% пластичного вещества (каолина или формовочной глины). Этим достигается большая текучесть исходной прессовочной массы, что позволяет получать из асбопласта электроизоляционные изделия сложного профиля.

Основным недостатком многих минеральных диэлектриков (за исключением слюды) является невысокий уровень их электрических характеристик, вызванный большим количеством имеющихся пор и наличием оксидов железа. Такое явление позволяет использовать минеральные диэлектрики только в устройствах низкого напряжения.

В большинстве случаев все минеральные диэлектрики, кроме слюды и базальта, перед применением пропитывают парафином, битумом, стиролом, бакелитовыми смолами и др. Наибольший эффект достигается при пропитке уже механически обработанных минеральных диэлектриков (панели, перегородки, камеры и др.).

Мрамор и изделия из него не переносят резких изменений температуры и растрескиваются. Шифер, базальт, талькохлорит, слюда и асбестоцемент более устойчивы к резким сменам температур.

Слюдяные электроизоляционные материалы

Данные материалы состоят из листочков слюды, склеенных при помощи какой-либо смолы или клеящего лака. К клееным слюдяным материалам относятся миканиты, микафолий и микаленты. Клееные слюдяные материалы используют в основном для изоляции обмоток электрических машин высокого напряжения (генераторы, электродвигатели), а также изоляции машин низкого напряжения и машин, работающих в тяжелых условиях.

Миканиты представляют собой твердые или гибкие листовые материалы, получаемые склеиванием листочков щипаной слюды с помощью шеллачной, глифталевых, кремнийорганических и других смол или лаков на основе этих смол.

Основные виды миканитов — коллекторный, прокладочный, формовочный и гибкий. Коллекторный и прокладочный миканиты относятся к группе твердых миканитов, которые после клейки слюды подвергаются прессованию при повышенных удельных давлениях и нагреве. Эти миканиты обладают меньшей усадкой по толщине и большей плотностью. Формовочный и гибкий миканиты имеют более рыхлую структуру и меньшую плотность.

Коллекторный миканит — это твердый листовой материал, изготовляемый из листочков слюды, склеенных при помощи шеллачной или глифталевой смол или лаков на основе этих смол. Для обеспечения механической прочности при работе в коллекторах электрических машин в данные миканиты вводят не более 4% клеящего вещества.

Прокладочный миканит представляет собой твердый листовой материал, изготовляемый из листочков щипаной слюды, склеенных с помощью шеллачной или глифталевой смол или лаков на их основе. После склеивания листы прокладочного миканита подвергают прессованию. В данном материале 75—95% слюды и 25—5% клеящего вещества.

Формовочный миканит — твердый листовой материал, изготовляемый из листочков щипаной слюды, склеенных с помощью шеллачной, глифталевой или кремнийорганических смол или лаков на их основе. После склеивания листы формовочного миканита прессуют при температуре 140—150° С.

Гибкий миканит представляет собой листовой материал, обладающий гибкостью при комнатной температуре. Он изготовляется из листочков щипаной слюды, склеенных масляно-битумным, масляно-глифталевым или кремнийорганическим лаком (без сиккатива), образующим гибкие пленки.

Отдельные виды гибкого миканита оклеивают с двух сторон микалентной бумагой для увеличения механической прочности. Гибкий стекломиканит — листовой материал, гибкий при комнатной температуре. Это разновидность гибкого миканита, отличается повышенной механической прочностью и повышенной устойчивостью к нагреву. Данный материал изготовляется из листочков щипаной слюды, склеенных друг с другом кремнийорганическими или масляно-глифталевыми лаками, образующими гибкие нагревостойкие пленки. Листы гибкого стекломиканита оклеиваются с двух или с одной стороны бесщелочной стеклотканью.

Микафолий — это рулонный или листовой электроизоляционный материал, формуемый в нагретом состоянии. Он состоит из одного или нескольких, чаще двух-трех, слоев листочков слюды, склеенных между собой и с полотном бумаги толщиной 0,05 мм, или со стеклотканью, или со стеклосеткой. В качестве клеящих лаков применяют шеллачный, глифталевый, полиэфирный или кремнийорганический.

Микалента представляет собой рулонный электроизоляционный материал, гибкий при комнатной температуре. Состоит из одного слоя листочков щипаной слюды, склеенных между собой и оклеенных с одной или двух сторон тонкой микалентной бумагой, стеклотканью или стеклосеткой. В качестве клеящих лаков используют масляно-битумные, масляно-глифталевые, кремнийорганические и растворы каучуков.

Микашелк — рулонный электроизоляционный материал, гибкий при комнатной температуре. Микашелк представляет собой одну из разновидностей микаленты, но с повышенной механической прочностью на разрыв. Он состоит из одного слоя листочков щипаной слюды, склеенных между собой и оклеенных с одной стороны полотном из натурального шелка, а с другой — микалентной бумагой. В качестве клеящих лаков использованы масляно-глифталевые или масляно-битумные лаки, образующие гибкие пленки.

Микаполотно — рулонный или листовой электроизоляционный материал, гибкий при комнатной температуре. Микаполотно состоит из нескольких слоев щипаной слюды, склеенных между собой и оклеенных с двух сторон хлопчатобумажной тканью (перкаль) или микалентной бумагой с одной стороны и тканью — с другой.

Микалекс представляет собой слюдяную пластмассу, изготовляемую прессованием из смеси порошкообразной слюды и стекла. После прессования изделия подвергают термической обработке (сушке). Микалекс выпускают в виде пластин и стержней, а также в виде электроизоляционных изделий (панели, основания для переключателей, воздушных конденсаторов и пр.). При прессовании микалексовых изделий в них могут быть добавлены металлические части. Данные изделия поддаются всем видам механической обработки.

Слюдинитовые электроизоляционные материалы

При разработке природной слюды и при изготовлении электроизоляционных материалов на основе щипаной слюды остается большое количество отходов. Их утилизация дает возможность получить новые электроизоляционные материалы — слюдиниты. Такого рода материалы изготовляют из слюдинитовой бумаги, предварительно обработанной каким-либо клеящим составом (смолы, лаки). Из слюдяной бумаги путем склеивания с помощью клеящих лаков или смол и последующего горячего прессования получают твердые или гибкие слюдинитовые электроизоляционные материалы. Клеящие смолы могут быть введены непосредственно в жидкую слюдяную массу — слюдяную суспензию. Среди наиболее важных слюдинитовых материалов нужно сказать о следующих.

Слюдинит коллекторный — твердый листовой материал, калиброванный по толщине. Получается горячим прессованием листов слюдинитовой бумаги, обработанной шеллачным лаком. Коллекторный слюдинит выпускается в листах размером от 215 х 400 мм до 400 х 600 мм.

Слюдинит прокладочный — твердый листовой материал, получаемый горячим прессованием листов слюдинитовой бумаги, пропитанных клеящими лаками. Прокладочный слюдинит выпускается в листах размером 200 х 400 мм. Из него изготовляют твердые прокладки и шайбы для электрических машин и аппаратов с нормальным и повышенным перегревом.

Стеклослюдинит формовочный — твердый листовой материал в холодном состоянии и гибкий — в нагретом. Получается при склеивании слюдинитовой бумаги с подложками из стеклоткани. Формовочный нагревостойкий стеклослюдинит — твердый листовой материал, формуемый в нагретом состоянии. Его изготовляют путем склеивания листов слюдинитовой бумаги со стеклотканью при помощи нагревостойкого кремнийорганического лака. Он выпускается в листах размером 250 х 350 мм и более. Данный материал имеет повышенную механическую прочность при растяжении.

Слюдинит гибкий — листовой материал, гибкий при комнатной температуре. Его получают путем склеивания листов слюдинитовой бумаги с последующим горячим прессованием. В качестве связующего применяется полиэфирный или кремнийорганический лак. Большинство видов гибкого слюдинита оклеивается стеклотканью с одной или двух сторон. Стеклослюдинит гибкий (нагревостойкий) — листовой материал, гибкий при комнатной температуре. Производится в результате склеивания одного или нескольких листов слюдинитовой бумаги со стеклотканью или стеклосеткой при помощи кремнийорганических лаков. После склеивания материал подвергается горячему прессованию. Он оклеен стеклотканью с одной или двух сторон с целью повышения механической прочности.

Слюдинитофолий — рулонный или листовой материал, гибкий в нагретом состоянии, получаемый склеиванием одного или нескольких листов слюдинитовой бумаги с телефонной бумагой толщиной 0,05 мм, применяемой в качестве гибкой подложки. Область применения этого материала та же, что и микафолия на основе щипаной слюды. Слюдинитофолий выпускается в рулонах шириной 320—400 мм.

Слюдинитовая лента — рулонный нагревостойкий материал, гибкий при комнатной температуре, состоящий из слюдинитовой бумаги, оклеенной с одной или обеих сторон стеклосеткой или стеклотканью. Слюдинитовые ленты выпускают преимущественно в роликах шириной 15, 20, 23, 25, 30 и 35 мм, реже — в рулонах.

Стеклобумослюдинитовая лента — рулонный, гибкий в холодном состоянии материал, состоящий из слюдинитовой бумаги, стеклосетки и микалентной бумаги, склеенных и пропитанных эпоксидно-полиэфирным лаком. С поверхности ленту покрывают липким слоем компаунда. Выпускают ее в роликах шириной 15, 20, 23, 30, 35 мм.

Стеклослюдинитоэлектрокартон — листовой материал, гибкий при комнатной температуре. Он получается в результате склеивания слюдинитовой бумаги, электрокартона и стеклоткани при помощи лака. Выпускается в листах размером 500 х 650 мм.

Слюдопластовые электроизоляционные материалы

Все слюдопластовые материалы изготовляются путем склеивания и прессования листов слюдопластовой бумаги. Последнюю получают из непромышленных отходов слюды в результате механического дробления частиц упругой волной. По сравнению со слюдинитами слюдопластовые материалы обладают большей механической прочностью, но менее однородны, т. к. состоят из частиц большей величины, чем слюдиниты. Важнейшими слюдопластовыми электроизоляционными материалами являются следующие.

Слюдопласт коллекторный — твердый листовой материал, калиброванный по толщине. Получается горячим прессованием листов слюдопластовой бумаги, предварительно покрытых слоем клеящего состава. Выпускается в листах размером 215 х 465 мм.

Слюдопласт прокладочный — твердый листовой материал, изготавливаемый горячим прессованием листов слюдопластовой бумаги, покрытых слоем связующего вещества. Выпускается в листах размером 520 х 850 мм.

Слюдопласт формовочный — прессованный листовой материал, твердый в холодном состоянии и способный формоваться в нагретом. Выпускается в листах размером от 200 х 400 мм до 520 х 820 мм.

Слюдопласт гибкий — прессованный листовой материал, гибкий при комнатной температуре. Выпускается в листах размером от 200 х 400 мм до 520 х 820 мм. Стеклослюдопласт гибкий — прессованный листовой материал, гибкий при комнатной температуре, состоящий из нескольких слоев слюдопластовой бумаги, оклеенных с одной стороны стеклотканью, а с другой — стеклосеткой или с обеих сторон стеклосеткой. Выпускается в листах размером от 250 х 500 мм до 500 х 850 мм.

Слюдопластофолий — рулонный или листовой материал, гибкий и формуемый в нагретом состоянии, получаемый склеиванием нескольких листов слюдопластовой бумаги и оклеенный с одной стороны телефонной бумагой или без нее.

Слюдопластолента — гибкий при комнатной температуре рулонный материал, состоящий из слюдопластовой бумаги, оклеенной микалентной бумагой с обеих сторон. Этот материал выпускается в роликах шириной 12, 15, 17, 24, 30 и 34 мм.

Стеклослюдопластолента нагревостойкая — гибкий при комнатной температуре материал, состоящий из одного слоя слюдопластовой бумаги, оклеенной с одной или с двух сторон стеклотканью или стеклосеткой с помощью кремнийорганического лака. Материал выпускается в роликах шириной 15, 20, 25, 30 и 35 мм.

Электрокерамические материалы и стекла

Электрокерамические материалы представляют собой искусственные твердые тела, получаемые в результате термической обработки (обжига) исходных керамических масс, состоящих из различных минералов (глины, талька и др.) и других веществ, взятых в определенном соотношении. Из керамических масс получают различные электрокерамические изделия: изоляторы, конденсаторы и др.

В процессе высокотемпературного обжига данных изделий между частицами исходных веществ происходят сложные физико-химические процессы с образованием новых веществ кристаллического и стеклообразного строения.

Электрокерамические материалы делят на 3 группы: материалы, из которых изготовляют изоляторы (изоляторная керамика), материалы, из которых изготовляют конденсаторы (конденсаторная керамика), и сегнетокерамические материалы, обладающие аномально большими значениями диэлектрической проницаемости и пьезоэффектом. Последние получили применение в радиотехнике. Все электрокерамические материалы отличаются высокой нагревостойкостыо, атмосферостойкостью, стойкостью к электрическим искрам и дугам и обладают хорошими электроизоляционными свойствами и достаточно высокой механической прочностью.

Наряду с электрокерамическими материалами, многие типы изоляторов изготовляют из стекла. Для производства изоляторов применяют малощелочное и щелочное стекла. Большинство типов изоляторов высокого напряжения изготовляют из закаленного стекла. Закаленные стеклянные изоляторы по своей механической прочности превосходят фарфоровые изоляторы.

Магнитные материалы

Величины, с помощью которых оцениваются магнитные свойства материалов, называются магнитными характеристиками. К ним относятся: абсолютная магнитная проницаемость, относительная магнитная проницаемость, температурный коэффициент магнитной проницаемости, максимальная энергия магнитного поля и пр. Все магнитные материалы делятся на две основные группы: магнитно-мягкие и магнитно-твердые.

Магнитно-мягкие материалы отличаются малыми потерями на гистерезис (магнитный гистерезис — отставание намагниченности тела от внешнего намагничивающего поля). Они имеют относительно большие значения магнитной проницаемости, малую коэрцитивную силу и относительно большую индукцию насыщения. Данные материалы применяются для изготовления магнитопроводов трансформаторов, электрических машин и аппаратов, магнитных экранов и прочих устройств, где требуется намагничивание с малыми потерями энергии.

Магнитно-твердые материалы отличаются большими потерями на гистерезис, т. е. обладают большой коэрцитивной силой и большой остаточной индукцией. Эти материалы, будучи намагниченными, могут длительное время сохранять полученную магнитную энергию, т. е. становятся источниками постоянного магнитного поля. Магнитно-твердые материалы применяются для изготовления постоянных магнитов.

Согласно своей основе, магнитные материалы подразделяются на металлические, неметаллические и магнитодиэлектрики. К металлическим магнитно-мягким материалам относятся: чистое (электролитическое) железо, листовая электротехническая сталь, железо-армко, пермаллой (железо-никелевые сплавы) и др. К металлическим магнитно-твердым материалам относятся: легированные стали, специальные сплавы на основе железа, алюминия и никеля и легирующих компонентов (кобальт, кремний и пр.). К неметаллическим магнитным материалам относятся ферриты. Это материалы, получаемые из порошкообразной смеси окислов некоторых металлов и окиси железа. Отпрессованные ферритовые изделия (сердечники, кольца и др.) подвергают обжигу при температуре 1300—1500° С. Ферриты бывают магнитно-мягкие и магнитно-твердые.

Магнитодиэлектрики — это композиционные материалы, состоящие из 70—80% порошкообразного магнитного материала и 30—20% органического высокополимерного диэлектрика. Ферриты и магнитодиэлектрики отличаются от металлических магнитных материалов большими значениями удельного объемного сопротивления, что резко снижает потери на вихревые токи. Это позволяет использовать эти материалы в технике высоких частот. Кроме этого, ферриты обладают стабильностью своих магнитных характеристик в широком диапазоне частот.

Электротехническая листовая сталь

Электротехническая сталь является магнитно-мягким материалом. Для улучшения магнитных характеристик в нее добавляют кремний, который повышает величину удельного сопротивления стали, что приводит к уменьшению потерь на вихревые токи. Такая сталь выпускается в виде листов толщиной 0,1; 0,2; 0,35; 0,5; 1,0 мм, шириной от 240 до 1000 мм и длиной от 720 до 2000 мм.

Пермаллои

Данные материалы представляют собой железо-никелевые сплавы с содержанием никеля от 36 до 80%. Для улучшения тех или иных характеристик пермаллоев в их состав добавляют хром, молибден, медь и др. Характерными особенностями всех пермаллоев являются их легкая намагничиваемость в слабых магнитных полях и повышенные значения удельного электрического сопротивления.

Пермаллои — пластичные сплавы, легко прокатываемые в листы и ленты толщиной до 0,02 мм и менее. Благодаря повышенным значениям удельного сопротивления и стабильности магнитных характеристик пермаллои могут применяться до частот 200—500 кГц. Пермаллои очень чувствительны к деформациям, которые вызывают ухудшение их первоначальных магнитных характеристик. Восстановление первоначального уровня магнитных характеристик деформированных пермаллойных деталей достигается термической обработкой их по строго разработанному режиму.

Магнитно-твердые материалы

Магнитно-твердые материалы обладают большими значениями коэрцитивной силы и большой остаточной индукцией, а следовательно, большими значениями магнитной энергии. К магнитно-твердым материалам относятся:

сплавы, закаливаемые на мартенсит (стали, легированные хромом, вольфрамом или кобальтом);

железо-никель-алюминиевые нековкие сплавы дисперсионного твердения (альни, альнико и др.);

ковкие сплавы на основе железа, кобальта и ванадия (виккалой) или на основе железа, кобальта, молибдена (комоль);

сплавы с очень большой коэрцитивной силой на основе благородных металлов (платина — железо; серебро — марганец — алюминий и др.);

металлокерамические нековкие материалы, получаемые прессованием порошкообразных компонентов с последующим обжигом отпрессованных изделий (магнитов);

магнитно-твердые ферриты;

металлопластические нековкие материалы, получаемые из прессовочных порошков, состоящих из частиц магнитно-твердого материала и связующего вещества (синтетическая смола);

магнитоэластические материалы (магнитоэласты), состоящие из порошка магнито-твердого материала и эластичного связующего (каучук, резина).

Остаточная индукция у металлопластических и магнитоэластических магнитов на 20—30% меньше по сравнению с литыми магнитами из тех же магнито-твердых материалов (альни, альнико и др.).

Ферриты

Ферриты представляют собой неметаллические магнитные материалы, изготовленные из смеси специально подобранных окислов металлов с окисью железа. Название феррита определяется названием двухвалентного металла, окисел которого входит в состав феррита. Так, если в состав феррита входит окись цинка, то феррит называется цинковым; если в состав материала добавлена окись марганца — марганцевым.

В технике находят применение сложные (смешанные) ферриты, имеющие более высокие значения магнитных характеристик и большее удельное сопротивление по сравнению с простыми ферритами. Примерами сложных ферритов являются никель-цинковый, марганцево-цинковый и др.

Все ферриты — вещества поликристаллического строения, получаемые из окислов металлов в результате спекания порошков различных окислов при температурах 1100-1300° С. Ферриты могут обрабатываться только абразивным инструментом. Они являются магнитными полупроводниками. Это позволяет применять их в магнитных полях высокой частоты, т. к. потери у них на вихревые токи незначительны.

Полупроводниковые материалы и изделия

К полупроводникам относится большое количество материалов, отличающихся друг от друга внутренней структурой, химическим составом и электрическими свойствами. Согласно химическому составу, кристаллические полупроводниковые материалы делят на 4 группы:

материалы, состоящие из атомов одного элемента: германий, кремний, селен, фосфор, бор, индий, галлий и др.;

материалы, состоящие из окислов металлов: закись меди, окись цинка, окись кадмия, двуокись титана и пр.;

материалы на основе соединений атомов третьей и пятой групп системы элементов Менделеева, обозначаемые общей формулой и называемые антимонидами. К этой группе относятся соединения сурьмы с индием, с галлием и др., соединения атомов второй и шестой групп, а также соединения атомов четвертой группы;

полупроводниковые материалы органического происхождения, например полициклические ароматические соединения: антрацен, нафталин и др.

Согласно кристаллической структуре, полупроводниковые материалы делят на 2 группы: монокристаллические и поликристаллические полупроводники. К первой группе относятся материалы, получаемые в виде больших одиночных кристаллов (монокристаллы). Среди них можно назвать германий, кремний, из которых вырезают пластинки для выпрямителей и других полупроводниковых приборов.

Вторая группа материалов — это полупроводники, состоящие из множества небольших кристаллов, спаянных друг с другом. Поликристаллическими полупроводниками являются: селен, карбид кремния и пр.

По величине удельного объемного сопротивления полупроводники занимают промежуточное положение между проводниками и диэлектриками. Некоторые из них резко уменьшают электрическое сопротивление при воздействии на них высокого напряжения. Это явление нашло применение в вентильных разрядниках для защиты линий электропередачи. Другие полупроводники резко уменьшают свое сопротивление под действием света. Это используется в фотоэлементах и фоторезисторах. Общим свойством для полупроводников является то, что они обладают электронной и дырочной проводимостью.

Электроугольные изделия (щетки для электрических машин)

К данного рода изделиям относятся щетки для электрических машин, электроды для дуговых печей, контактные детали и др. Электроугольные изделия изготовляют методом прессования из исходных порошкообразных масс с последующим обжигом.

Исходные порошкообразные массы составляют из смеси углеродистых материалов (графит, сажа, кокс, антрацит и пр.), связующих и пластифицирующих веществ (каменноугольные и синтетические смолы, пеки и пр.). В некоторых порошкообразных массах связующего нет.

Щетки для электрических машин бывают графитными, угольно-графитными, электрографитированными, металло-графитными. Графитные щетки изготовляют из натурального графита без связующего (мягкие сорта) и с применением связующего (твердые сорта). Графитные щетки отличаются мягкостью и при работе вызывают незначительный шум. Угольно-графитные щетки производят из графита с добавлением других углеродистых материалов (кокс, сажа), с введением связующих веществ. Полученные после термической обработки щетки покрывают тонким слоем меди (в электролитической ванне). Угольно-графитные щетки обладают повышенной механической прочностью, твердостью и малым износом при работе.

Электрографитированные щетки изготовляют из графита и других углеродистых материалов (кокс, сажа), с введением связующих веществ. После первого обжига щетки подвергают графитизации, т. е. отжигу при температуре 2500—2800° С. Электрографитированные щетки обладают повышенной механической прочностью, стойкостью к толчкообразному изменению нагрузки и применяются при больших окружных скоростях. Металло-графитные щетки производят из смеси порошков графита и меди. В некоторые из них вводят порошки свинца, олова или серебра. Эти щетки отличаются малыми значениями удельного сопротивления, допускают большие плотности тока и имеют малые переходные падения напряжения.

1)Классификация электротехнических материалов Электротехнические материалы представляют собой совокупность проводниковых, электроизоляционных, магнитных и полупроводниковых материалов, предназначенных для работы в электрических и магнитных полях. Сюда же можно отнести основные электротехнические изделия: изоляторы, конденсаторы, провода и некоторые полупроводниковые элементы. Электротехнические материалы в современной электротехнике занимают одно из главных мест. Всем известно, что надежность работы электрических машин, аппаратов и электрических установок в основном зависит от качества и правильного выбора соответствующих электротехнических материалов. Анализ аварий электрических машин и аппаратов показывает, что большинство из них происходит вследствие выхода из строя электроизоляции, состоящей из электроизоляционных материалов.

Не менее важное значение для электротехники имеют магнитные материалы. Потери энергии и габариты электрических машин и трансформаторов определяются свойствами магнитных материалов. Довольно значительное место занимают в электротехнике полупроводниковые материалы, или полупроводники. В результате разработки и изучения данной группы материалов были созданы различные новые приборы, позволяющие успешно решать некоторые проблемы электротехники. . Но для реализации этих качеств необходимы знания свойств всех групп электротехнических материалов.

2) Проводниковые материалы – общая характеристика, основные требования К этой группе материалов относятся металлы и их сплавы. Чистые металлы имеют малое удельное сопротивление. Исключением является ртуть, у которой удельное сопротивление довольно высокое. Сплавы также обладают высоким удельным сопротивлением. Чистые металлы применяются при изготовлении обмоточных и монтажных проводов, кабелей и пр. Проводниковые сплавы в виде проволоки и лент используются в реостатах, потенциометрах, добавочных сопротивлениях и т. д.

В подгруппе сплавов с высоким удельным сопротивлением выделяют группу жароупорных проводниковых материалов, стойких к окислению при высоких температурах. Жароупорные, или жаростойкие, проводниковые сплавы применяются в электронагревательных приборах и реостатах. Кроме малого удельного сопротивления, чистые металлы обладают хорошей пластичностью, т. е. могут вытягиваться в тонкую проволоку, в ленты и прокатываться в фольгу толщиной менее 0,01 мм. Сплавы металлов имеют меньшую пластичность, но более упруги и устойчивы механически. Характерной особенностью всех металлических проводниковых материалов является их электронная электропроводность. Удельное сопротивление всех металлических проводников увеличивается с ростом температуры, а также в результате механической обработки, вызывающей остаточную деформацию в металле. Прокатку или волочение используют в том случае, когда нужно получить проводниковые материалы с повышенной механической прочностью, например при изготовлении проводов воздушных линий, троллейных проводов и пр.

. Чтобы вернуть деформированным металлическим проводникам прежнюю величину удельного сопротивления, их подвергают термической обработке — отжигу без доступа кислорода.

3) Обзор основных групп проводниковых материалов

Проводники бывают первого и второго рода. К проводникам первого рода относят те проводники, в которых имеется электронная проводимость (посредством движения электронов). К проводникам второго рода относят проводники с ионной проводимостью (электролиты)

По удельному электрическому сопротивлению металлические проводниковые материалы можно разделить на две основные группы: металлы высокой проводимости; металлы и сплавы с высоким сопротивлением.

Проводники первой группы применяются в основном для изготовления обмоточных и монтажных проводов, жил кабелей различного назначения, шин и т.д. Проводники второй группы используются при производстве резисторов, электронагревательных приборов, нитей ламп накаливания и т.п.

Особую группу составляют криопроводники и сверхпроводники – материалы, обладающие ничтожно малым удельным электрическим сопротивлением при температурах, близких к абсолютному нулю.

4) Основные электрические свойства проводниковых материалов.

Удельная проводимость (или обратная ей величина - удельное сопротивление)

Удельной проводимостью называют меру способности вещества проводить электрический ток.

По величине удельной электрической проводимости вещества подразделяются на:

- проводники (свыше 1'000'000 См/м);

- диэлектрики (до 0.000'000'01 См/м);

- полупроводники (от 0.000'000'01 до 1'000'000 См/м).

Контактная разность потенциалов и термоэлектродвижущая сила (термо - ЭДС)

Разность потенциалов, возникающая при соприкосновении двух различных проводников, находящихся при одинаковой температуре.

Термоэлектродвижущая сила, возникающая в электрической цепи, состоящей из нескольких разнородных проводников, имеющих в местах контактов различную температуру

Работа выхода электронов из металла Минимальная энергия, которую надо затратить, чтобы удалить электрон из твердого или жидкого вещества в вакуум (в состояние с равной нулю кинетической энергией).

5) Требования к физическим свойствам проводниковых материалов

Термоустойчивость, износоустойчивость и всякое такое.

Требования к качеству нормируются стандартами. Электрическая прочность изоляции и оболочки, толщина, масло-стойкость, морозостойкость, термостойкость - это важнейшие показатели качества проводниковых изделий.

минимальное значение удельного электрического сопротивления;

достаточно высокие механические свойства (главным образом предел прочности при растяжении и относительное удлинение

при разрыве);

способность легко обрабатываться, что необходимо для изготовления проводов малых и средних сечений;

способность образовывать контакты с малым переходным сопротивлением при пайке, сварке и других методах соединения проводов;

коррозионная стойкость.

20. Основная цель легирования — изменить тип проводимости и концентрацию носителей в объёме полупроводника для получения заданных свойств (проводимости, получения требуемой плавности pn-перехода). Самыми распространёнными легирующими примесями для кремния являются фосфор Р и мышьяк As (позволяют получить n-тип проводимости) и бор В (p-тип).

Терморезистор (термистор, термосопротивление) - зависимость сопротивления от температуры. Редко Si, для низких температур Ge (точные терморезисторы). Обычно – окислы металов CuO/Cu2O/Mn2O3, CoO/Mn2O3, NiO, FeO/Fe2O3 и т.д.

6) Основные виды проводниковых электротехнических изделий.

Проводниковые изделия подразделяют по назначению на провода установочные, обмоточные, арматурные, монтажные; шнуры соединительные для бытовых электроприборов, армированные; наборы шнуров и проводов.

Провода - кабельные изделия, имеющие 1, 2 и более токоведущих жил.

Установочные - для открытой и скрытой проводки: медные, алюминиевые. Обмоточные - для обмотки трансформатора. Арматурные.

Шнур - разновидность провода, но жила шнура состоит из тонких, мелких, гибких проводов. Предназначен для подключения к э/цепи приборов, машин, источников света.

Электроустановочные изделия для монтажа проводки: ролики, втулки, заглушки, вводные воронки, изоляционная лента и др.

Электроустановочные изделия для подключения электроприборов электрической сети: выключатели, штепсельные розетки, вилки, переключатели, патроны, предохранители и др.

Выключатели: основной конструктивный узел выключателей, переключателей - контактный механизм. Долговечность зависит от материала и способа переключения контактов. Штепсельные соединения: вилки, розетки, устройства разветвительные, удлинительные, переходные. Предохранители: служат для защиты бытовых приборов и электрических сетей оттоков короткого замыкания, от перегрузочных токов.

7) Потери энергии в проводниковых материалах. Понятие термической стойкости.

Чем больше ток, тем больше мощность, причем зависимость линейная. Однако с ростом тока потери энергии растут квадратично, т.е. гораздо сильнее, чем рост передаваемой мощности. Увеличение площади сечения провода ослабляет проблему, но, с другой стороны, происходит увеличение стоимости строительства линии электропередач, т.к. стоимость цветного металла проводов значительна. Кроме того, увеличение веса проводов влечет увеличение массы опор, усложнение монтажа и т.п. В результате компромисса между увеличением потерь и увеличением строительства договорились рассчитывать провода линии на определенную компромиссную плотность тока, т.н. экономическую плотность тока.

Термостойкость — понятие материаловедения. Это техническое свойство материала — его способность выдерживать термические напряжения не разрушаясь. Обычно её измеряют в количествах теплосмен, которое образец способен выдержать, потеряв не более 20 % своей массы.

8) Поверхностный эффект и его влияние на проводимость изделий. Скин-эффект (поверхностный эффект) — эффект уменьшения амплитуды электромагнитных волн по мере их проникновения вглубь проводящей среды. В результате этого эффекта, например, переменный ток высокой частоты при протекании по проводнику распределяется не равномерно по сечению, а преимущественно в поверхностном слое.

С увеличением частоты переменного тока скин-эффект проявляется всё более

явно, что заставляет учитывать его при конструировании и расчётах электрических схем, работающих с переменным и импульсным током. Например, вместо обычных медных проводов могут применяться медные провода, покрытые тонким слоем серебра. Серебро обладает наибольшей удельной проводимостью среди всех металлов, и тонкий его слой, в котором благодаря скин-эффекту и протекает большая часть тока, оказывает сильное влияние на активное сопротивление проводника.

Скин-эффект обусловлен тем, что при распространении электромагнитной волны в проводящей среде возникают вихревые токи, в результате чего часть электромагнитной энергии преобразуется в теплоту. Это и приводит к уменьшению напряжённостей электрического и магнитного полей и плотности тока, т. е. к затуханию волны.

На скин-эффекте основано действие взрывомагнитных генераторов (ВМГ), взрывомагнитных генераторов частоты (ВМГЧ) и в частности ударно-волновых излучателей (УВИ).

Благодаря скин-эффекту на высоких частотах джоулева теплота выделяется преимущественно в поверхностном слое. Это позволяет раскалить проводник в тонком поверхностном слое без существенного изменения температуры внутренних областей. Данное явление используется в важном с промышленной точки зрения методе поверхностной закалки металлов в промышленности.

9) Магнитные свойства вещества. Классификация ферромагнитных материалов.

Свойства:

Начальная магнитная проницаемость - значение магнитной проницаемости при

малой напряженности поля.Максимальная магнитная проницаемость  - максимальное значение магнитной проницаемости, которое достигается обычно в средних магнитных полях.

Из других основных терминов, характеризующих магнитные материалы, отметим следующие.

Намагниченность насыщения  - максимальная намагниченность, которая достигается в сильных полях, когда все магнитные моменты доменов ориентированы вдоль магнитного поля.

Петля гистерезиса - зависимость индукции от напряженности магнитного поля при изменении поля по циклу: подъем до определенного значения - уменьшение,  переход через нуль, после достижения того же значения с обратным знаком - рост и т.п.Максимальная петля гистерезиса - достигающая максимальной намагниченности насыщения. Остаточная индукция Bост - индукциямагнитного поля на обратном ходе петли гистерезиса при нулевой напряженности магнитного поля.

Коэрцитивная сила Нс - напряженность поля на обратном ходе петли гистерезиса при которой достигается нулевая индукция.При каждом цикле перемагничивания часть магнитной энергии, запасаемой в материале (W = BH/2) теряется, т.е. переходит в тепло. Эти потери называются потерями на перемагничивание и они пропорциональны площади кривой гистерезиса. Для материалов, используемых в энергетике, в особенности для трансформаторов, потери энергии желательно уменьшить, т.е.

уменьшить площадь кривой. Это может быть достигнуто, если коэрцитивная сила будет как можно меньше. Классификация:Магнито мягикие Магнито твердые

10) Ферромагнитные материалы имеют очень важное значение в электротехнике и радиотехнике. Эти материалы (в основном сталь) благодаря большой магнитной проницаемости ; получили широкое применение в различных электромагнитах, электрических генераторах, электродвигателях, трансформаторах, электроизмери­тельных приборах, реле и т. д. Магнитнотвердые – постоянные магниты, используются в измерительных приборах и в микроэлектронике.В отличие от магнитномягких, имеют существенно большие коэрцитивную силу (от 5. 10*3 до 5*10*6 А\м) и площадь петли гистерезиса. Магнитомягкие материалы используются в кач сердечников трансформаторов. Должны иметь высокую магнитную пронцаемость, малую коэрцитивную силу, большую индукцию насыщения, узкую петлю гистерезиса, малые магнитные потери.

11-12) Основы физической теории ферромагнетизма. Ферромагнетики характеризуются высокой степенью намагничивания и нелинейной зависимостью от . Основная кривая намагничивания ферромагнетика (магнитный момент которого первоначально был равен нулю) показана на рис. При достижении насыщения В продолжает расти по линейному закону: Кроме нелинейной зависимости В(Н), для ферромагнетиков характерно явление гистерезиса – запаздывание намагниченности за изменением магнитного поля. Если довести намагничивание до насыщения, а затем уменьшать напряженность внешнего магнитного поля, то индукция поля будет следовать не по первоначальной (основной) кривой намагничивания, а пойдет несколько

(11-12)выше. В результате, когда напряженность магнитного поля станет равной нулю, индукция поля не исчезнет и будет характеризоваться величиной Br , называемой остаточной индукцией. Основная кривая намагничивания и петля гистерезиса ферромагнетика.

Существование остаточной намагниченности делает возможным изготовление постоянных магнитов, то есть тел, обладающих макроскопическим магнитным моментом, на поддержание которого не требуются затраты энергии.

Намагниченность ферромагнетика обращается в нуль лишь под действием магнитного поля Нс , имеющего направление, противоположное намагничивающему полю (рис.12.2). Напряженность поля Нс называют коэрцитивной силой. Если коэрцитивная сила велика, ферромагнетик называют жестким; для такого ферромагнетика характерна широкая петля гистерезиса. Ферромагнетик с малой коэрцитивной силой (и соответственно узкой петлей гистерезиса) называют мягким.

Петля гистерезиса образуется при циклическом перемагничивании ферромагнетика. В зависимости от значения намагничивающего поля Н, различают частный цикл и максимальную петлю гистерезиса. Отсюда следует, что намагниченность ферромагнетика в сильной мере зависит от предшествующей истории его пребывания в магнитном поле.

Магнитная восприимчивость χ, а следовательно и магнитная проницаемость μ, ферромагнетика являются функциями напряженности магнитного поля (рис.12.3). Для некоторых ферромагнетиков величина

μmax может достигать значений ~800 000 (супермаллой). (11-12Теория ферромагнетизма была создана Я.И. Френкелем (1894-1952) и В.Гейзенбергом (Heisenberg W., 1901-1976) в 1928г. Согласно этой теории, ответственными за магнитные свойства ферромагнетиков являются собственные (спиновые) магнитные моменты электронов. При определенных условиях между электронами возникают так называемые обменные силы, имеющие особую электростатическую (не магнитную) природу. Благодаря действию этих сил магнитные моменты электронов выстраиваются параллельно друг другу. В результате возникают области спонтанного (самопроизвольного) намагничения ферромагнетика, которые называются доменами. В пределах каждого домена ферромагнетик намагничен до насыщения и обладает определенным магнитным моментом. Для разных доменов эти моменты имеют различное направление, так что в отсутствие внешнего магнитного поля суммарный магнитный момент всего тела равен нулю. При намагничивании ферромагнетика сначала происходит смещение границ доменов, в результате чего домены, магнитный момент которых составляет с направлением внешнего магнитного поля наименьший угол, увеличиваются за счет уменьшения других доменов (рис.12.4). Этот процесс идет до тех пор, пока весь объем ферромагнетика не станет монодоменным. На следующей стадии имеет место поворот магнитного момента домена в направлении поля. При этом магнитные моменты электронов в пределах домена поворачиваются одновременно. Эти процессы являются необратимыми, что и служит причиной появления гистерезиса.

Каждый ферромагнетик

характеризуется температурой ТC , называемой точкой Кюри, выше которой области спонтанной намагниченности распадаются и ферромагнетик утрачивает свои свойства. В таблице приведены значения ТC для железа, никеля и кобальта – трех чистых металлов ферромагнетиков.Основная кривая намагничивания — важнейшая характеристика магнитных материалов. Физика процессов намагничивания магнитных материалов может быть понята при отождествлении ее с характерными участками основной кривой намагничивания.

13) МАГНИ́ТНЫЕ ПОТЕ́РИ, потери на перемагничивание ферромагнетиков . Складываются из потерь на гистерезис, на вихревые токи и на магнитное последействие.  МАГНИ́ТНЫЕ ПОТЕ́РИ, потери на перемагничивание ферромагнетиков. Складываются из потерь на гистерезис, на вихревые токи и на магнитное последействие.

Потери на гистерезис. Обусловлены необратимыми процессами перемагничивания. Потери на гистерезис за один цикл перемагничивания (т.е. за один период изменения поля), отнесенные к единице объема вещества, определяются площадью статической петли гистерезиса. Для вычисления этих потерь можно использовать эмпирическую формулу Эг=mn, где — коэффициент, зависящий от свойств материала, m — максимальная индукция, достигаемая в данном цикле, n — показатель степени, принимающий значения от 1,6 до 2 в зависимости от m.

Потери на вихревые токи. В проводящей среде за счет ЭДС самоиндукции, пропорциональной скорости изменения магнитного потока, возникают вихревые токи. Вихревые токи нагревают проводники, в которых они возникли. Это приводит к потерям энергии в магнитопроводах (в сердечниках трансформаторов и катушек переменного тока, в магнитных цепях машин). Для уменьшения потерь на вихревые токи необходимо использовать материал с повышенным удельным сопротивлением, либо собирать сердечник из тонких слоев,

изолированных друг от друга.

Потери на магнитное последействие. Обусловлены магнитной вязкостью — отставанием магнитной индукции от изменения напряженности магнитного поля. Спад намагниченности ферромагнетиков происходит не мгновенно, а течение некоторого промежутка времени. Время установления стабильного магнитного состояния существенно возрастает с понижением температуры. Одна из основных причин магнитного последействия — тепловая энергия, которая помогает слабо закрепленным доменным границам преодолевать энергетические барьеры, мешающие их свободному смещению при изменении поля. Физическая природа потерь на магнитное последействие во многом аналогична релаксационной поляризации диэлектриков.

14) Перемагничивание материала связано с потерями электриче­ской энергии, которая превращается в тепло, вызывающее нагрева­ние магнитных материалов.

Количество энергии, расходуемой на перемагничивание стали (на гистерезис), пропорционально площади петли гистерезиса. Для уменьшения потерь на перемагничивание в машинах и аппаратах с переменным намагничиванием выгодно применять магнитные ма­териалы с малой площадью петли гистерезиса.

15) Потери от вихревых токов – причины возникновения и зависимости.

В соответствии с Джоуля — Ленца законом Вихревые токи нагревают проводники, в которых они возникли. Поэтому Вихревые токи приводят к потерям энергии (потери на Вихревые токи) в магнитопроводах (в сердечниках трансформаторов и катушек переменного тока, в магнитных цепях машин). Для уменьшения потерь энергии на Вихревые токи (и вредного нагрева магнитопроводов) и уменьшения эффекта «вытеснения» магнитного потока из ферромагнетиков магнитопроводы машин и аппаратов переменного тока делают не из

сплошного куска ферромагнетика (электротехнической стали), а из отдельных пластин, изолированных друг от друга (например, специальным лаком). Такое деление на пластины, расположенные перпендикулярно направлению Вихревые токи, ограничивает возможные контуры путей Вихревые токи, что сильно уменьшает величину этих токов. При очень высоких частотах применение ферромагнетиков для магнитопроводов нецелесообразно; в этих случаях их делают из магнитодиэлектриков, в которых Вихревые токи практически не возникают из-за очень большого сопротивления этих материалов

16) Магнитомягкие материалы, магнитно-мягкие материалы — материалы, обладающие свойствами ферромагнетика или ферримагнетика, причём их коэрцитивная сила по индукции составляет не более 4 кА/м. Такие материалы также обладают высокой магнитной проницаемостью и малыми потерями на гистерезис. Магнитомягкие материалы используются в качестве сердечников трансформаторов, электромагнитов, в измерительных приборах и в других случаях, где необходимо при наименьшей затрате энергии достигнуть наибольшей индукции. Для уменьшения потерь на вихревые токи в трансформаторах используют магнитомягкие материалы с повышенным удельным электрически сопротивлением, обычно применяются в виде магнитопроводов, собранных из отдельных изолированных друг от друга тонких листов. Листы изолируются лаком друг от друга. Такое исполнение сердечника называется шихтованным.

17) Магнитотвердые материалы после намагничивания должны создавать внешние постоянные поля, по возможности нечувствительные к различным возмущающим факторам. Необходимыми условиями здесь являются высокие значения остаточной индукции, коэрцитивной силы, малая проницаемость возврата и большой коэффициент выпуклости. Одним из основных оценочных критериев качества магнитотвердых материалов является энергетическое произведение (ВН)mах, зависящее как от Вr и Hc, так и от характера кривой размагничивания, оцениваемого коэффициентом выпуклости  . В существующих магнитотвердых материалах значение этого коэффициента находится в пределах 0,25—0,75. Относительная проницаемость возврата определяется как тангенс угла наклона к оси H прямой, соединяющей вершины цикла возврата . Чем больше  , тем чувствительнее материал к дестабилизирующим факторам.

41) Электротехническое стекло, стекло, обладающее определёнными электрическими свойствами и применяемое в электротехнике и электронике в качестве изоляционных и конструкционных материалов. Электроизоляционное стекло применяют для изготовления изоляторов линий электропередач, герметичных вводов и разъёмов, конденсаторов; стеклянную ткань и стеклопластики - для изоляции деталей электрических машин и устройств. В тонкой стеклянной изоляции выпускается микропровод. Для электроизоляции используют бесщелочные и малощелочные алюмосиликатные стекла, обладающие высокими электросопротивлением и влагостойкостью, электрической и термической прочностью.

Электровакуумное стекло - основной конструкционный материал в электровакуумном приборостроении и производстве источников света. Из него изготовляют электронные лампы, электроннолучевые и рентгеновские трубки, фотоумножители, счётчики частиц, лампы накаливания, газоразрядные лампы, галогенные лампы, импульсные источники света и. т. д. Из электровакуумного стекла делают оболочки, держатели и изоляторы электродов («ножки»), а также герметичные выводы электровакуумных и полупроводниковых приборов с металлическим корпусом. Электровакуумные стекла должны иметь высокие диэлектрические характеристики и (во избежание растрескивания спаев) согласованный с металлами (или стеклами) коэффициент теплового расширения (КТР) a. По значению КТР и следовательно, возможности спаивания с соответствующими металлами электровакуумные стекла разделяют на следующие основные группы (a×107 град-1): кварцевая (6-10), вольфрамовая (37-40), молибденовая (47-50), титановая (72-75), платинитовая (84-92), железная (110-120).

(42)использования бывают жидкими, а затем отвердевают. Компаунды не имеют в своем составе растворителей. По своему назначению данные составы делятся на пропиточные и заливочные. Первые из них применяют для пропитки обмоток электрических машин и аппаратов, вторые — для заливки полостей в кабельных муфтах, а также в электромашинах и приборах с целью герметизации.

Компаунды бывают термореактивными (не размягчающимися после отвердевания) и термопластичными (размягчающимися при последующих нагревах). К термореактивным можно отнести компаунды на основе эпоксидных, полиэфирных и некоторых других смол. К термопластичным относятся компаунды на основе битумов, воскообразных диэлектриков и термопластичных полимеров (полистирол, полиизобутилен и др.). Пропиточные и заливочные компаунды на основе битумов по нагревостойкости относятся к классу А (105° С), а некоторые к классу Y (до 90° С). Наибольшей нагревостойкостыо обладают компаунды эпоксидные и кремнийорганические.

Компаунды МБК изготовляют на основе метакриловых эфиров и применяют как пропиточные и заливочные. Они после отвердевания при 70—100° С (а со специальными отвердителями при 20° С) являются термореактивными веществами, которые могут использоваться в интервале температур от —55 до +105° С.

48)Изоляция обеспечивает необходимую электрическую прочность токопроводящих жил по отношению друг к другу и к заземленной оболочке (земле). Применяется бумажная, резиновая и пластмассовая (поливинилхлоридная и полиэтиленовая) изоляция.

Изоляция, наложенная на жилу кабеля, называется изоляцией жилы, а наложенная поверх изолированных скрученных или параллельно уложенных жил многожильного кабеля, называется поясной изоляцией.

Бумажная изоляция кабелей пропитывается вязкими пропиточными составами (маслоканифольными или электроизоляционными синтетическими).

Недостатком кабелей с вязким пропиточным составом является крайне ограниченная возможность прокладки их по наклонным трассам, а именно - разность высот между концевыми их заделками не должна превышать: для кабелей с вязкой пропиткой до 3 кВ бронированных и небронированных в алюминиевой оболочке - 25 м, небронированных в свинцовой оболочке - 20 м, бронированных в свинцовой оболочке - 25 м, для кабелей с вязкой пропиткой 6 кВ бронированных и небронированных в свинцовой оболочке - 15 м, в алюминиевой - 20 м, для кабелей с вязкой пропиткой 10 кВ бронированных и небронированных в свинцовой и алюминиевой оболочке - 15 м.

Кабели с вязким пропиточным составом, свободная часть которого удалена, называют кабелями с обедненно-пропитанной изоляцией. Их применяют при прокладке на вертикальных и наклонных трассах без ограничения разности уровней, если это небронированные и бронированные кабели в алюминиевой оболочке на напряжение до 3 кВ, и с разностью уровней до 100 м - для любых других кабелей с обедненно-пропитанной изоляцией.

50) Термореактивные (поликонденсационные) полимерные связующие обычно представляют собой вязкие жидкости или высококонцентрированные водные растворы. Не совсем верно их называют «смолами». Как правило, это олигомеры, которые в процессе отверждения переходят в высокомолекулярное состояние.

Говоря о термореактивных полимерах (реактопластах), необходимо отметить их принципиальное отличие от полимеров термопластичных. Это отличие лежит в основе этих веществ и касается молекулярного строения. До процесса отверждения, молекулы этих двух видов полимеров представляют собой линейную структуру, однако, молекулы термореактивных полимеров способны соединяться друг с другом, проявляя химическую активность. Молекулы термопластичных полимеров остаются инертными.

Молекулы реактопластов чутко реагируют на изменения ряда условий, в частности, температуры, количества отвердителя, что отражается на их химической активности. На сегодняшний день к реактопластам, которые нашли широкое применение в сфере строительства, относят фенолформальдегидные, полиэфирные, карбамидные, полиуретановые и эпоксидные полимеры.

(41) Для спаивания металлов и стекол со значительной разницей в КТР (например кварцевого стекла) используют последовательные спаи из нескольких стекол с небольшими отличиями в КТР (переходные стекла) или специальные переходы. В отечественной классификации электровакуумных стекол значение КТР указывается в марке стекла (например, стекло С49-2 имеет a = 49×10-7 град-1). В качестве электровакуумных стекол используют бромсиликатные, алюмосиликатные, щелочные и бесщелочные стекла, содержащие окислы щёлочноземельных металлов, свинца и др. Для изготовления мощных источников света применяют кварцевое и высоко- кремнезёмное (кварцоидное) стекла (94-96% SiO2).

В микроэлектронике тонкие (1-50 мкм) стеклянные плёнки используют для межслойной изоляции бескорпусной защиты интегральных схем, герметизации их корпусов и т. д. Для получения тонких плёнок применяют легкоплавкие бесщелочные боратные и боросиликатные стекла. Из стекол изготовляют некоторые типы корпусов интегральных схем.

43) Керамические изоляционные материалы

Эти материалы получают из глинистых продуктов путем спекания при высокой температуре. Они представляют собой кристаллическую фазу и нерастворимы в воде. Формируются керамические изделия из пластичной массы при комнатной температуре. Дальнейший обжиг, сопровождающийся объемной усадкой, приводит к тому, что утрачиваются пластичные свойства исходного сырья, изделие становится твердым и стабильным по форме.

Фарфор и стеатит. Фарфор представляет собой силикат алюминия, в его состав входят 40 - 50 % каолина и глины (пластификатора), 20 - 30% оксида алюминия и 30% полевого шпата. Эта смесь дает высокопрочный фарфор (глинистый или глиноземистый фарфор) с лучшими механическими свойствами, чем применявшийся ранее кварцевый фарфор.

Стеатит представляет собой силикат магния. Затруднительная обработка, вызванная отсутствием связующего материала, является причиной того, что изделия из стеатита имеют малые размеры, и поэтому для изготовления больших изоляторов на высокие напряжения предпочитают использовать фарфор. Стеатит по сравнению с фарфором обладает лучшими механическими характеристиками и меньшими диэлектрическими потерями.

Фарфор в электроэнергетике используется в качестве изоляции воздушных линий электропередачи, газовых выключателей. Из фарфора изготавливаются опорные изоляторы разъединителей и сборных шин, вводы силовых трансформаторов, изоляционные конструкции измерительных трансформаторов напряжения и тока, изоляционные корпуса оборудования и т.д.

(48)Для прокладки по вертикальным и

крутонаклонным трассам без ограничения разности уровней изготовляют кабели с бумажной изоляцией, пропитанной особым составом на основе церезина или полиизобутилена. Этот состав имеет повышенную вязкость, вследствие чего при нагреве кабеля, проложенного вертикально или по крутонаклонной трассе, он не стекает вниз. Поэтому кабели с такой изоляцией можно прокладывать на любую высоту, так же как и кабели с пластмассовой и резиновой изоляцией.

Резиновая изоляция выполняется из сплошного слоя резины или из резиновых лент с последующей вулканизацией. Силовые кабели с резиновой изоляцией применяют в сетях переменного тока до 1 кВ и постоянного тока до 10 кВ.

Силовые кабели с пластмассовой изоляцией имеют изоляцию из поливинилхлоридного пластиката в виде сплошного слоя или из композиций полиэтилена. Также используются кабели с изоляцией из самозатухающего (не поддерживающего горения) и вулканизированного полиэтилена.

Экраны применяют для защиты внешних цепей от влияния электромагнитных полей токов, проходящих по кабелю, и для обеспечения симметрии электрического поля вокруг жил кабеля. Экраны выполняют из полупроводящей бумаги и алюминиевой или медной фольги.

Заполнители необходимы для устранения свободных промежутков между конструктивными элементами кабеля с целью герметизации, придания необходимой формы и механической устойчивости конструкции кабеля. В качестве заполнителей применяют жгуты из бумажных лент или кабельной пряжи, нити из пластмассы или резины.

42) Электроизоляционные лаки и эмали

Лаки — это растворы пленкообразующих веществ: смол, битумов, высыхающих масел, эфиров целлюлозы или композиций этих материалов в органических растворителях. В процессе сушки лака из него испаряются растворители, а в лаковой основе происходят физико-химические процессы, приводящие к образованию лаковой пленки. По своему назначению электроизоляционные лаки делят на пропиточные, покровные и клеящие.

Пропиточные лаки применяются для пропитки обмоток электрических машин и аппаратов с целью закрепления их витков, увеличения коэффициента теплопроводности обмоток и повышения их влагостойкости. Покровные лаки позволяют создать защитные влагостойкие, маслостойкие и другие покрытия на поверхности обмоток или пластмассовых и других изоляционных деталей. Клеящие лаки предназначаются для склеивания листочков слюды друг с другом или с бумагой и тканями с целью получения слюдяных электроизоляционных материалов (миканиты, микалента и др.).

Эмали представляют собой лаки с введенными в них пигментами — неорганическими наполнителями (окись цинка, двуокись титана, железный сурик и др.). Пигменты вводятся с целью повышения твердости, механической прочности, влагостойкости, дутостойкости и других свойств эмалевых пленок. Эмали относятся к покровным материалам.

По способу сушки различают лаки и эмали горячей (печной) и холодной (воздушной) сушки. Первые требуют для своего отверждения высокой температуры — от 80 до 200° С, а вторые высыхают при комнатной температуре. Лаки и эмали горячей сушки, как правило, обладают более высокими диэлектрическими, механическими и другими свойствами. С целью улучшения характеристик лаков и

44) Резиновые смеси состоят из каучука (натурального или синтетического), вулканизирующего вещества (тиурама), ускорителей вулканизации (каптакса, алтакса, ДФГ и др.), активаторов вулканизации (окиси цинка, кальция, магния и др.), наполнителей (каолина, мела, талька и др.), мягчителей (парафина, петролатума, вазелина, битума, канифоли, стеариновой или олеиновой кислоты, дибутилфталата, трикрезилфосфата, глифталевых смол и др.), противостарителей (неозона Д и др.), красителей (лака и пигментов, окиси цинка и титана, технического углерода) и других специальных материалов.

В кабелях и проводах с резиновой изоляцией допускают применение сепаратора из полиэтилентерефталатной (лавсановой), бумажной лент или хлопчатобумажной пряжи между токопроводящей жилой и изоляцией. Сепаратор предохраняет токопроводящую жилу от окисления, проникновения резины в промежутки между проволока жилы, обеспечивает их большую гибкость и меньший расход материалов, облегчает разделку концов проводов.

(48)Оболочки силовых кабелей. Алюминиевая, свинцовая, стальная гофрированная, пластмассовая и резиновая негорючая (найритовая) оболочки кабеля предохраняют внутренние элементы кабеля от разрушения влагой кислотами, газами и т. п.

Алюминиевую оболочку силовых кабелей на напряжение до 1 кВ допускается использовать в качестве четвертой (нулевой) жилы в четырехпроводных сетях переменного тока с глухозаземленной нейтралью за исключением установок со взрывоопасной средой и установок, в которых ток в нулевом проводе при нормальных условиях составляет более 75 % тока в фазной жиле.

Защитные покровы силовых кабелей. Так как оболочки кабелей могут повреждаться и даже разрушаться от химических и механических воздействий, их покрывают защитными покровами.

Защитные покровы предохраняют оболочки кабеля от внешних воздействий (коррозии, механических повреждений). К ним относятся подушка, бронепокров и наружный покров. В зависимости от конструкции кабеля применяют один, два или три защитных покрова.

Подушка накладывается на экран или оболочку для их защиты от коррозии и повреждения лентами или проволоками брони. Подушка выполняется из слоев пропитанной кабельной пряжи, поливинилхлоридных, полиамидных и других равноценных лент, крепированной бумаги, битумного состава или битума.

Для защиты от механических повреждений оболочки кабелей обматывают в зависимости от условий эксплуатации стальной ленточной или проволочной броней. Проволочную броню выполняют из круглых или плоских проволок.

(42)эмалей воздушной сушки, а также для ускорения отверждения их сушку иногда производят при повышенных температурах — от 40 до 80° С.

Основные группы лаков имеют следующие особенности. Масляные лаки образуют после высыхания гибкие эластичные пленки желтого цвета, стойкие к влаге и к нагретому минеральному маслу. По нагревостойкости пленки этих лаков относятся к классу А. В масляных лаках используют дефицитные льняное и тунговое масла, поэтому они заменяются лаками на синтетических смолах, более стойкими к тепловому старению.

Масляно-битумные лаки образуют гибкие пленки черного цвета, стойкие к влаге, но легко растворяющиеся в минеральных маслах (трансформаторное и смазочное). По нагревостойкости эти лаки относятся к классу А (105° С). Глифталевые и масляно-глифталевые лаки и эмали отличаются хорошей клеящей способностью по отношению к слюде, бумагам, тканям и пластмассам. Пленки этих лаков обладают повышенной нагревостойкостью (класс В). Они устойчивы к нагретому минеральному маслу, но требуют горячей сушки при температурах 120—130° С. Чисто глифталевые лаки на основе немодифицированных глифталевых смол образуют твердые негибкие пленки, применяемые в производстве твердой слюдяной изоляции (твердые миканиты). Масляно-глифталевые лаки после высыхания дают гибкие эластичные пленки желтого цвета.

Кремнийорганические лаки и эмали отличаются высокой нагревостойкостью и могут длительно работать при 180—200° С, поэтому они применяются в сочетании со стекловолокнистой и слюдяной изоляцией. Кроме этого, пленки обладают высокой влагостойкостью и стойкостью к электрическим искрам.

Лаки и эмали на основе полихлорвиниловых

46) Поливинилхлоридные (ПВХ) пластикаты - смесь поливинилхлоридной смолы с пластификаторами, стабилизаторами и другими добавками. Для изготовления ПВХ пластиката применяют суспензионные смолы. Пластификаторы (эфиры фталевой, фосфорной и себациновой кислот) придают ПВХ пластику эластичность и облегчают процесс его переработки, но ухудшают его химическую стойкость, нагревостойкость и электроизоляционные свойства. Более высокими электроизоляционными свойствами обладают пластификаторы совол и диоктилфталат. Поливинилхлоридные пластикаты на основе себациновой, адипиновой и фталевой кислот обладают более низкой летучестью, высокой стойкостью против старения и действия масел. В изоляционные ПВХ пластикаты вводят антиоксиданты (дифенилпропан), обеспечивающие длительное сохранение высокого удельного электрического сопротивления, гибкости при низких температурах и нагревостойкости. Для удешевления ПВХ пластикатов и придания большей стойкости против горения в них вводят хлорированные парафины. Введение в ПВХ пластикаты стабилизаторов (углекислого свинца и солей стеариновой кислоты, кальция, кадмия, бария, стронция и др., а также стеаратов свинца в композиции с эпоксидными смолами) значительно повышает температуру его разложения. Для получения цветного ПВХ пластиката в него вводят окрашивающие добавки, главным образом пигментные красители. Для удешевления и получения ряда специфических свойств ПВХ пластикат может содержать наполнители (каолин, сажу, карбонат кальция, тальк, шиферную и кварцевую муку, двуокись кремния, основной карбонат свинца и др.). Под воздействием температуры, солнечной радиации, пребывания в различных средах и т.д. ПВХ пластикаты за счет улетучивания пластификатора стареют - происходит снижение их эластичности и холодостойкости.

(48)Броня из плоских стальных лент защищает кабели только от механических повреждений. Броня из стальных проволок помимо этого воспринимает также и растягивающие усилия. Эти усилия возникают в кабелях при вертикальнойпрокладке кабелей на большую высоту или по крутонаклонным трассам.

Для предохранения брони кабелей от коррозии ее покрывают наружным покровом, выполненным из слоя кабельной или стеклянной пряжи, пропитанной битумным составом, а в некоторых конструкциях поверх слоев пряжи и битума накладывают выпрессованный поливинилхлоридный или полиэтиленовый шланг.

В шахтах, взрывоопасных и пожароопасных помещениях не допускается применять бронированные кабели обычной конструкции из-за наличия между оболочкой и броней кабеля «подушки» с содержанием горючего битума. В этих случаях должны применяться кабели с негорючей «подушкой» и наружный покров, изготовленный на основе стеклянной пряжи из штапельного стекловолокна

(42)эмалей воздушной сушки, а также для стойкостью к воде, нагретым маслам, кислым и щелочным химическим реагентам, поэтому они применяются в качестве покровных лаков и эмалей для защиты обмоток, а также металлических деталей от коррозии. Следует обратить внимание на слабое прилипание полихлорвиниловых и перхлорвиниловых лаков и эмалей к металлам. Последние вначале покрывают слоем грунта, а затем лаком или эмалью на основе полихлорвиниловых смол. Сушка этих лаков и эмалей производится при 20, а также при 50—60° С. К недостаткам такого рода покрытий относится их невысокая рабочая температура, составляющая 60—70° С.

Лаки и эмали на основе эпоксидных смол отличаются высокой клеящей способностью и несколько повышенной нагревостойкостью (до 130° С). Лаки на основе алкидных и фенольных смол (фенолоалкидные лаки) имеют хорошую высыхаемость в толстых слоях и образуют эластичные пленки, могущие длительно работать при температурах 120—130° С. Пленки этих лаков обладают влаго- и маслостойкостью.

Водно-эмульсионные лаки — это устойчивые эмульсии лаковых основ в водопроводной воде. Лаковые основы производят из синтетических смол, а также из высыхающих масел и их смесей. Водно-эмульсионные лаки пожаро- и взрывобезопасны, потому что в их составе нет легковоспламеняющихся органических растворителей. Из-за малой вязкости такие лаки имеют хорошую пропитывающую способность. Их применяют для пропитки неподвижных и подвижных обмоток электрических машин и аппаратов, длительно работающих при температурах до 105° С.

Электроизоляционные компаунды

Компаунды представляют собой изоляционные составы, которые в момент

47) Фторопласт (тефлон, политетрафторэтилен, фторополимер, галон, полифон, гостафлон, флуон, сорефлон, алгофлон) - это фторуглеродный полимер, получаемый полимеризацией газа тетрафторэтилена. В тонком слое фторопласт прозрачен, а в толстом - молочно-белый. Фторопласт хорошо обрабатывается сверлением, шлифованием, точением и фрезерованием. Механическую прочность фторопласт сохраняет в области температур от -190oС до +250oС.

Фторопласт морозостоек и теплостоек, остаётся эластичным от -70o до +270oC, устойчив к радиации и коррозии, негорюч, не подвержен действию грибков. У него низкая адгезия, в следствие чего фторопласт не смачивается водой, органическим растворителями и жирами, имеет совершенно низкий коэффициент трения скольжения. Фторопласт имеет очень высокую химическую стойкость, не поддаётся разрушению при воздействии кислот и щелочей. Свои химические свойства фторопласт сохраняет вплоть до +300oС.

Диэлектрические свойства фторопласта не изменяются до +200oC. У фторопласта крайне низкие диэлектрические потери и изменения диэлектрической проницаемости от температуры и частоты, высокая устойчивость к дуге, что позволяет эффективно применять фторопласт в электротехнике и радиотехнике.

При нагревании фторопласта выше 327 градусов цельсия у него исчезает кристаллическая структура, становится аморфным и прозрачным и увеличивается в размерах на 20 %, а при температуре 415 градусов разлагается.

49) Элегаз - электротехнический газ - представляет собой шестифтористую серу SF6 (шестифтор). Элегаз является основным изолятором в элементах ячеек с элегазовой изоляцией.

При рабочих давлениях и обычной температуре элегаз - бесцветный газ, без запаха, не горюч, в 5 раз тяжелее воздуха (плотность 6,7 против 1,29 у воздуха), молекулярная масса также в 5 раз больше, чем у воздуха.

Элегаз не стареет, т. е. не меняет своих свойств с течением времени, при электрическом разряде распадается, но быстро рекомбинирует, восстанавливая первоначальную диэлектрическую прочность.

Высокая электрическая прочность элегаза позволяет сократить изоляционные расстояния при небольшом рабочем давлении газа, в результате этого уменьшается масса и габариты электротехнического оборудования. Это, в свою очередь, дает возможность уменьшить габариты ячеек КРУЭ, что очень важно, например, для условий севера, где каждый кубический метр помещения стоит очень дорого.

Высокая диэлектрическая прочность элегаза обеспечивает высокую степень изоляции при минимальных размерах и расстояниях, а хорошие способность гашения дуги и охлаждаемость элегаза увеличивают отключающую способность коммутационных аппаратов и уменьшают нагрев токоведущих частей.

31.Благородные металлы  и их применение в электротехнике

Благородные металлы — металлы, не подверженные коррозии и окислению, что отличает их от большинства металлов. Все они являются также драгоценными металлами, благодаря их редкости. 

Эти металлы и сплавы на их основе обладают высокой химической стойкостью, в том числе и при повышенных температурах.

Золото Аu — металл желтого цвета, обладающий очень высокой пластичностью. Из него можно получать фольгу толщиной до 0,01 мкм. С кислотами и щелочами не взаимодействует, растворяется только в «царской водке» (смесь азотной и соляной кислот); Tпл=1063°С, σтв=150 МПа, δ = 40%, ρV =2.25•10-8Ом•м, Диамагнетик.

Применяют как контактный материал в слаботочных коммутирующих устройствах (например, в герконах), в качестве покрытия резонаторов СВЧ, внутренних поверхностей волноводов, в производстве электродов полупроводниковых фоторезисторов, фотоэлементов и для других целей. В коммутирующих устройствах чистое золото используют только для изготовления прецизионных контактов с малым контактным нажатием и низким напряжением.

Серебро Ag — металл белого цвета, пластичный, обладает самым низким удельным сопротивлением ρV = 1.58•10-8 Ом•м, Тпл = 961°С, σтв = 200 МПа, δ = 50%. Диамагнетик.

Применяют для получения гальванического покрытия в ВЧ- и СВЧ-устройствах. У керамических конденсаторов из него получают прочные электроды методом вжигания. Применяют серебро также в качестве контактного материала в коммутирующих устройствах (разрывные контакты), в составе некоторых твердых припоев, в производстве серебряно-цинковых и серебряно-кадмиевых аккумуляторов и в других случаях. К недостаткам серебра следует отнести его миграцию по поверхности и внутрь диэлектрика в условиях повышенных температур и влажности, более низкую коррозионную стойкость, чем у других благородных металлов, — серебро химически взаимодействует с серосодержащими веществами, например с газами H2S, SO2, и образует темные пленки сернистого серебра, имеющие повышенное ρV.

Платина Pt — блестящий тугоплавкий металл серовато-белого цвета (Тпл = 1770°С), с высокой плотностью (d = 21.45 Мг/м3 ) и пластичностью (у отожженных образцов σв≈150 МПа, δ = 30— 35%), ρV = 9.8•10-8Ом•м. Платина химически очень стойкий металл; на воздухе не окисляется даже при температуре плавления и не образует сернистых соединений, что обеспечивает платиновым разрывным контактам стабильное переходное сопротивление. Парамагнетик.

Для разрывных контактов обычно используют сплавы платины с Ni, Ag, Au, иридием, которые повышают ее твердость и ρV. Особо тонкие нити из платины (диаметром около 1 мкм) используют в качестве подвесок в электрометрах. Применяют платину для изготовления высокотемпературных (до 1600°С) термопар.

Палладий Pd — серебристо-белый металл,  самый легкий. (d=12.02 Мг/м3) и наиболее легкоплавкий (Тпл = 1550°С) из всех металлов платиновой группы; мягкий и пластичный (отожженные образцы  имеют σв≈200 МПа,  δ = 40%), ρV ~ 1.08•10-7Ом•м. По ряду свойств палладий близок к платине и может служить ее заменителем, так как дешевле платины в 4—5 раз. Однако он отличается большей реакционной способностью, чем платина.

На воздухе при нагревании до 600—700°С палладий окисляется с образованием моноксида PdO. Способность палладия поглощать водород (1 объем палладия поглощает до 900 объемов водорода) используют в электровакуумной технике. Поглотив водород при невысоких температуре и давлении, палладий выделяет его в вакууме при нагревании до 350—500°С. Этим методом наполняют водородом некоторые типы газоразрядных приборов. Палладий и его сплавы с серебром и медью используют для разрывных контактов. Парамагнетик

В электротехнической промышленности из благородных металлов изготовляют контакты с большой степенью надёжности (стойкость против коррозии, устойчивость к действию образующейся на контактах кратковременной электрической дуги). В технике слабых токов при малых напряжениях в цепях используются контакты из сплавов золота с серебром, золота с платиной, золота с серебром и платиной. Для слаботочной и средненагруженной аппаратуры связи широко применяют сплавы палладия с серебром (от 60 до 5 % палладия). Представляют интерес металлокерамические контакты, изготовляемые на основе серебра как токопроводящего компонента. Магнитные сплавы благородных металлов  употребляют при изготовлении малогабаритных электроприборов. Сопротивления (потенциометры) для автоматических приборов и тензометров делают из сплавов благородных металлов (главным образом палладия с серебром, реже с другими металлами). У них малый температурный коэффициент электрического сопротивления, малая термоэлектродвижущая сила в паре с медью, высокое сопротивление износу, высокая температура плавления, они не окисляются.

Стойкие металлы идут на изготовление деталей, работающих в агрессивных средах — технологические аппараты, реакторы, электрические нагреватели, высокотемпературные печи, аппаратуру для производства оптического стекла и стекловолокна, термопары, эталоны сопротивления и др.

В электронной технике из золота, легированного германием, индием, галлием, кремнием, оловом, селеном, делают контакты в полупроводниковых диодах и транзисторах. Золотом и серебром напыляют поверхность волноводов.

В качестве покрытий благородные металлы предохраняют основные от коррозии или придают поверхности этих металлов свойства, присущие благородным металлам (например, отражательная способность, цвет, блеск и т. д.).

32.Проводниковые материалы с большим удельным сопротивлением

Иногда электроустройство должно иметь большое сопротивление, тогда применяемый материал должен обладать большим удельным сопротивлением, так как чем больше ρ, тем меньше масса металла. Таковыми являются металлы и сплавы, у которых ρ20ос не менее 0,3 мкОм.м. Чистые металлы в таких случаях применяются реже, чем сплавы. Классифицировать их можно по разным признакам, в том числе – по области применения, определяющей требования к материалам с большим сопротивлением.  Общие требования к материалам с большим сопротивлением: 1) большое удельное сопротивление (не менее 0,3 мкОм.м) 2) достаточная механическая прочность 3) технологичность, обеспечивающая возможность получения соответствующих сечений. Проводниковые материалы с высоким сопротивлением бывают металлические, получившие наибольшее распространение, и неметаллические.

Металлические проводниковые материалы можно разделить на три группы: 1 — для точных электроизмерительных приборов и образцовых резисторов (манганин) 2 — для резисторов и реостатов - константан . Его температурный коэффициент сопротивления близок к нулю.

3 — имеющие высокую рабочую температуру и предназначенные для нагревательных приборов и нагрузочных реостатов - сплавы никеля, хрома и железа (нихром), хрома, алюминия и железа.

В электронной аппаратуре широко применяют металлопленочные резисторы. Токопроводящим элементом этих резисторов является тонкий слой сплава с высоким удельным сопротивлением, нанесенный на поверхность керамического стержня и покрытый защитным слоем эмали.

Общая характеристика- высокая термическая стойкость. Все устройства из материалов с высоким удельным сопротивлением имеют линейную ВАХ.

33.Сплавы на основе железа в качестве проводниковых материалов

К проводникам или проводниковым материалам относятся материалы, хорошо проводящие электрический ток.

Железо (сталь) как наиболее дешевый и доступный металл, обладающий к тому же высокой механической прочностью, представляет большой интерес для использования в качестве проводникового материала. Однако даже чистое железо имеет значительно более высокое сравнительно с медью и алюминием удельное сопротивление r (около 0,1 мкОм-м); значение r стали, т. е. железа с примесью углерода и других элементов, еще выше.

При переменном токе в стали, как в ферромагнитном материале заметно сказывается поверхностный эффект, поэтому в соответствии с известными законами электротехники активное сопротивление стальных проводников переменному току выше, чем постоянному току. Кроме того, при переменном токе в стальных проводниках появляются потери мощности на гистерезис. В качестве проводникового материала обычно применяется мягкая сталь с содержанием углерода 0,10-0,15%, имеющая предел прочности при растяжении sр = 700-750 МПа, относительное удлинение перед разрывом Dl/l = 5-8% и удельную проводимость g,в 6-7 раз меньшую по сравнению с медью. Такую сталь используют в качестве материала для проводов воздушных линий при передаче небольших мощностей. В подобных случаях применение стали может оказаться достаточно выгодным, так как при малой силе тока сечение провода определяется не электрическим сопротивлением, а его механической прочностью.

Сталь как проводниковый материал используется также в виде шин, рельсов трамваев, электрических железных дорог (включая «третий рельс» метро) и пр. Для сердечников сталеалюминевых проводов воздушных линий электропередачи (см. выше) применяется особо прочная стальная проволока, имеющая ар = 1200-1500 МПа и Dl/l = 4-5%. Обычная сталь обладает малой стойкостью к коррозии: даже при нормальной температуре, особенно в условиях повышенной влажности, она быстро ржавеет; при повышении температуры скорость коррозии резко возрастает. Поэтому поверхность стальных проводов должна быть защищена слоем более стойкого материала. Обычно для этой цели применяют покрытие цинком. Железо имеет высокий температурный коэффициент удельного сопротивления. Поэтому тонкую железную проволоку, помещенную для защиты от окисления в баллон, заполненный водородом или иным химическим неактивным газом, можно применять в бареттерах, т.е. в приборах, использующих зависимость сопротивления от силы тока, нагревающего помещенную в них проволочку, для поддержания постоянства силы тока при колебаниях напряжения.

34. Электротехническая сталь.

Электротехническая сталь — тонколистовая сталь, сталь для магнитопроводов (сердечников) электротехнического оборудования (трансформаторов, генераторов, электродвигателей, дросселей, стабилизаторов, реле и т. д.). К электротехническим сталям относятся кремнистая электротехническая сталь и чистое железо. 

В зависимости от требуемых свойств, электротехническая сталь содержит различное количество кремния. Нередко в качестве легирующей добавки в электротехнической стали может содержаться алюминий (до 0,5%).

Электромагнитные свойства 

Как правило, электротехнические стали стараются выполнить:

  • с возможно более высоким удельным электрическим сопротивлением;

  • с возможно более низкой коэрцитивной силой;

с возможно более узкой петлёй гистерезиса(Петля гистерезиса - зависимость индукции от напряженности магнитного поля при изменении поля по циклу: подъем до определенного значения - уменьшение,  переход через нуль, после достижения того же значения с обратным знаком - рост и т.п.);

  • с возможно более высокой магнитной проницаемостью.

Стали для постоянных магнитов выполняют с высокой коэрцетивной силой, с широкой петлёй гистерезиса.

Электротехническая сталь выпускается в виде листов (часто в рулонах) и узкой ленты толщиной 0,05—1 мм. Качество электротехнической стали характеризуется электромагнитными свойствами (удельными потерями, коэрцитивной силой и индукцией), изотропностью свойств (разницей в значениях свойств металла вдоль и поперёк направления прокатки), геометрическими размерами и качеством листов и полос, механическими свойствами, а также параметрами электроизоляционного покрытия. Снижение удельных потерь в стали обеспечивает уменьшение потерь энергии, а повышение максимальной индукции стали позволяет уменьшить габариты, снижение анизотропии свойств улучшает характеристики устройств с вращающимися магнитопроводом. Электротехническая сталь обычно поставляется в отожжённом состоянии. Для снятия механических напряжений, возникающих при изготовлении деталей проводят дополнительный кратковременный отжиг при 800—850°С. Некоторые электротехнические стали поставляются в неотожжённом виде; в этом случае для обеспечения заданного уровня свойств после механической обработки необходимо проводить термическую обработку деталей.

Кремнистая электротехническая сталь является основным магнитомягким материалом массового потребления. По составу она представляет собой сплавы железа с (0.5—5)% кремния, которые образуют с железом твердый раствор (см. ТВЕРДЫЕ РАСТВОРЫ). Сплавы содержат также 0,1—0,3% Mn. В зависимости от требуемого уровня магнитных свойств, электротехническая сталь содержит различное количество кремния. Введение кремния уменьшает потери на вихревые токи (см. ВИХРЕВЫЕ ТОКИ), так как увеличивает удельное сопротивление материала. Легирование кремнием приводит к увеличению начальной и максимальной магнитных проницаемостей, уменьшению коэрцитивной силы (см. КОЭРЦИТИВНАЯ СИЛА) и снижению потерь на гистерезис (см. ГИСТЕРЕЗИС), уменьшает константы магнитной анизотропии и магнитострикции. Кремний способствует выделению углерода в виде графита, а также почти полному раскислению стали за счет химического связывания кислорода в SiO2, который в виде шлака выделяется из расплава. Но при содержании Si более 5% ухудшаются механические свойства, повышаются твердость, хрупкость, сталь становится непригодной для штамповки 

Сплавы, в которых углерода менее 0,02%, называются технически чистым железом. Технически чистое железо относится также к электротехническим сталям.  Техническое железо(армко-железо (см. АРМКО-ЖЕЛЕЗО)) содержит менее 0,04% С и имеет высокую магнитную проницаемость (m = 4500 Гс/Э). Оно является электротехническим магнитно-мягким материалом (марки Э, ЭА, ЭАА) и применяется для сердечников, полюсных наконечников, электромагнитов, пластин аккумуляторов. 

35. Применение ферритов в электротехнике

Практически отсутствуют потери на вихревые токи в ферритах. Дело в том, что ферриты представляют собой оксидную керамику МеО+Fe2O3, которая является диэлектриком, либо полупроводником. Типичное удельное сопротивление феррита 103-104 Ом.м. Это на 9-10 порядков превышает сопротивление металлов. Ясно, что вихревые токи в таком материале не возникнут.  Магнитная проницаемость у ферритов обычно ниже, чем у стали и не превышает нескольких сотен, хотя есть ферриты с проницаемостью до нескольких тысяч (20000НМ, 1000НМ).         Благодаря своим свойствам магнитомягкие ферриты широко применяются в качестве сердечников контурных катушек постоянной и переменной индуктивностей, фильтров в аппаратуре радио- и проводной связи, сердечников импульсных и широкополосных трансформаторов,  трансформаторов развертки телевизоров, магнитных модуляторов и усилителей. Из них изготавливают также стержневые магнитные антенны, индуктивные линии задержки и другие детали и узлы электронной аппаратуры.     

Большую роль играют ферриты с прямоугольной петлей гистерезиса (ППГ). Требования к свойствам магнитных сердечников с ППГ, вытекающие из рассмотрения описанных устройств с их применением, можно сформулировать следующим образом:

 1. Высокая индукция насыщения Bs, которая должна достигаться при малой напряженности магнитного поля. Это требование особенно важно для мощных устройств.

 2. Малая коэрцитивная сила Hc, а следовательно, малая энергия, необходимая для перемагничивания сердечника.

 3. Относительная остаточная индукция, выражаемая формулой     b = Br/Bm должна быть как можно ближе к единице. Эта величина непостоянна и достигает максимума при определенном значении напряженности магнитного поля, которое также должно быть как можно меньше.

 4.коэффициент прямоугольности петли гистерезиса Кпу, представляющий собой отношение остаточной индукции Вr к максимальной индукции Вmax:

Кпу = Вr/Вmax Он должен быть как можно ближе к единице. Этот коэффициент применяется при использовании сердечников запоминающих устройств с записью по принципу совпадения.

 5. Малое время перемагничивания - это время, в течение которого наведенное напряжение уменьшается до 10% максимального значения.

 6. Как можно большее удельное электрическое сопротивление. У металлических сердечников, кроме того, необходима достаточно малая толщина пластин. Величина удельного сопротивления и толщина пластин определяют потери на вихревые токи,  а следовательно6 и максимальную рабочую частоту. Кроме того, они влияют на время перемагничивания.

Они используются в качестве логических элементов в ЗУ, в качестве термодатчиков. 

Феррит – это ферромагнетик, не проводящий электрического тока (то есть фактически феррит является магнитным изолятором). В ферритах вихревые токи не создаются, и поэтому они очень быстро перемагничиваются – в такт с частотой внешнего электромагнитного поля (на этом основана эффективность их защитных свойств).

Кабельный феррит ослабляет шумовые токи, захватывая магнитное поле и рассеивая часть его энергии в виде тепла. Раньше для ослабления шумовых токов применялось дорогостоящее экранирование кабелей медной оплеткой. Применение кабельных ферритов позволило снизить стоимость экранирования кабелей и повысить эффективность подавления помех.

36.Пермаллой и родственные сплавы,применение в электротехнике

ПЕРМАЛЛО́Й [англ. permalloy, от perm(eability) — проницаемость и alloy — сплав], магнитомягкий сплав Ni с Fe с высокой магнитной проницаемостью, малой коэрцитивной силой Hc и малыми потерями на гистерезис. Относится к магнитомягким материалам.

Магнитные свойства и удельное сопротивление сплава сильно зависит от его состава.

Магнитные свойства пермаллоев очень чувствительны к внешним механическим напряжениям, зависят от химического состава, наличия примесей в сплаве, от режимов термической обработки материала, которую проводят в вакууме либо в среде водорода, иногда — при наложении магнитного поля. Различают две основные группы пермаллоев: низконикелевые (40-50% Ni; типичный представитель — перменорм) и высоконикелевые (70-83% Ni). Термическая обработка высоконикелевых пермаллоев сложнее, чем низконикелевых.

Индукция насыщения высоконикелевых пермаллоев почти в два раза ниже, чем у

электротехнической стали, и в полтора раза ниже, чем у низконикелевых пермаллоев. Магнитные проницаемости высоконикелевых пермаллоев в несколько раз выше, чем у низконикелевых и намного превосходит проницаемости электротехнических сталей. Удельное сопротивление высоконикелевых пермаллоев почти в три раза меньше, чем у низконикелевых, поэтому при повышенных частотах предпочтительнее использовать низконикелевые пермаллои. Для достижения высокой m и низкой Hc высоконикелевые пермаллои подвергают резкому охлаждению. Магнитная проницаемость пермаллоев сильно снижается с увеличением частоты, причем тем резче, чем больше ее первоначальное значение. Это объясняется возникновением в материале заметных вихревых токов из-за небольшого удельного сопротивления.

Для придания сплавам необходимых свойств в состав пермаллоев вводят рад добавок. Молибден и хром повышает удельное сопротивление и начальную магнитную проницаемость пермаллоев и уменьшают чувствительность к механическим деформациям. Однако одновременно с этим снижается индукция насыщения. Медь увеличивает постоянство m в узких интервалах напряженности магнитного поля, повышает термостабильность и удельное сопротивление, а также делает сплав легко поддающимся механической обработке. Кремний и марганец увеличивают удельное сопротивление пермаллоев. Высоконикелевые пермаллои для уменьшения скорости охлаждения и повышения электросопротивления обычно легируют Mo, Cr, Cu, Si и др. элементами. Типичный представитель высоконикелевых пермаллоев — молибденовый пермаллой . Сплав супермаллой обладает очень высокими магнитными свойствами в слабых полях.

Низконикелевые сплавы применяются для изготовления сердечников малогабаритных силовых трансформаторов, дросселей, реле и деталей магнитных цепей, работающих при повышенных индукциях без домагничивания или с небольшим подмагничиванием. Высоконикелевые сплавы используют для изготовления сердечников малогабаритных трансформаторов, реле и магнитных экранов, сердечников импульсных трансформаторов, магнитных усилителей и бесконтактных реле. Практическое применение в ряде устройств автоматики и вычислительной техники получили также пермаллои. с 65-68% Ni (как правило, легированные 2-3% Mo), характеризующиеся прямоугольной петлей гистерезиса.

Постоянные магниты на основе сплавов железа

Наиболее частыми представителями и основными материалами для изготовления постоянных магнитов на основе сплавов железа являются железо – никель - алюминий (Fe-Ni-Al) и железо–никель-кобальт (Fe-Ni-Co). Бывают магнитно-твердые и магнитно мягкие стали.

Магнитно-твердые.

Сплавы на основе железа - никеля – алюминия. Технические сплавы содержат (20 – 34)% Ni и (11-18)% Al, так же их называют ални-сплавы, обладают большими значениями коэрцитивной силы и остаточной индукцией. Плотность ~ 6900 кг/м³. При уменьшении доли железа в сплаве остаточная индукция уменьшается при возрастании коэрцитивной силы. Применяют в основном легированные медью, кобальтом, кремнием, ниобием или титаном. Добавки не только улучшают магнитные свойства, но и обеспечивают лучшую повторяемость характеристик, т.е. ослабляют зависимость магнитных свойств от небольших изменений химического состава, наличия примесей и отклонения от заданного режима термообработки.

Сплав ални с кобальтом называется алнико, с кремнием – алниси, сплав с содержанием 24% кобальта – магнико.

Для улучшения магнитных свойств сплавы с содержанием Со свыше 12% подвергаются термомагнитной обработке. Легирование медью повышает коэрцитивную силу и улучшает механические свойства, но снижает остаточную индукцию. Высококобальтовые сплавы с содержанием Со более 15% используют обычно с магнитной и кристаллической текстурой. Намагничивание этих сплавов происходит главным образом за счет процессов вращения векторов намагничивания. Эти сплавы отличаются высокой твердостью и хрупкостью, поэтому магниты из них изготавливают методом литья. Обрабатывается шлифовкой, в том числе с применением алмазного инструмента, ультразвука и др. Примесь углерода снижает магнитные свойства сплава, его содержание не должно превышать 0,03 %.

Недостатком сплавов системы Fe – Al – Ni является их высокая твердость и хрупкость, поэтому они механически могут обрабатываться только шлифованием. Магнитные свойства этих сплавов существенно зависят от шихты, параметров процесса литья, режима термомагнитной обработки.

Магниты из ални сплавов применяются в радиоприемных устройствах, акустических аппаратах, электроизмерительных приборах, регулирующих аппаратах, магнитных сепараторах и др.

Магнитно-мягкие стали и сплавы отличаются легкой намагничиваемостью в относительно слабых магнитных полях. Их основными потребительскими свойствами являются высокая магнитная проницаемость, низкая коэрцитивная сила, малые потери на вихревые токи и при перемагничивании. Эти свойства обеспечивает гомогенная (чистый металл или твердый раствор) структура, чистая от примесей. Магнитно-мягкие материалы должны быть полностью рекристаллизованы для устранения внутренних напряжений, так как даже слабый наклеп существенно снижает магнитную проницаемость и повышает коэрцитивную силу. Магнитная проницаемость возрастает при микроструктуре из более крупных зерен.

По химическому составу промышленно применяемые магнитно-мягкие (электротехнические) стали и сплавы делятся на:

низкоуглеродистые (0,05...0,005%С) с содержанием кремния 0,8...4,8%;

сплавы железа с никелем.

В низкоуглеродистых сталях кремний, образуя с a-железом твердый раствор, увеличивает электрическое сопротивление и, следовательно, уменьшает потери на вихревые токи; кроме того. кремний повышает магнитную проницаемость, немного снижает коэрцитивную силу и потери на гистерезис вследствие вызываемого им роста зерна, графитизирующего действия и лучшего раскисления сталей. Однако кремний понижает индукцию в сильных магнитных полях и повышает хрупкость, особенно при его содержании 3...4%.

Магнитомягкие материалы применяются для изготовления сердечников реле постоянного и переменного тока, магнитопроводов трансформаторов, электрических машин и аппаратов, магнитных экранов и т.п., где требуется быстрое намагничивание с малыми потерями энергии. Нелегированная электротехническая сталь не находит широкого применения в электротехнике из-за низкого удельного электросопротивления, что увеличивает потери энергии на вихревые токи. В мощных устройствах на переменном токе шире используется электротехническая кремнистая сталь.

Лакоткань – электроизоляционный материал на основе шелка (ЛШМ) или капрона (ЛКМ). Материал отличается повышенными диэлектрическими свойствами. Допустимая рабочая температура ткани – в пределах 105 °C, с возможностью выдерживать кратковременное повышение температуры, например, при монтаже.

Лакоткань используются в основном в электромашиностроительной и электроприборостроительной областях. Применяется в качестве электроизоляционного материала в электрических аппаратах, машинах и приборах низкого напряжения, в качестве межслойной изоляции в высоконагруженных трансформаторах, для изготовления композиционных материалов, для гибкой межвитковой и пазовой изоляции, а также в качестве различных электроизоляционных прокладок.

В зависимости от тканевой основы лакоткани делятся на шелковые, капроновые и хлопчатобумажные.

Для пропитки лакотканей применяются масляные, масляно-битумные, эскапоновые и кремний-органические лаки, а также кремний-органические эмали (пигментированные лаки), растворы кремнийорганических каучуков и др. составы.

Наибольшей растяжимостью и гибкостью обладают капроновые лакоткани. Они могут работать при нагреве не выше 105ºС (класс А). К этому же классу нагревостойкости относятся все хлопчатобумажные и шелковые лакоткани.

В маслонаполненных трансформаторах применяют маслостойкие лакоткани ЛШМС и ЛКМС.

ЛШМС отличается повышенными диэлектрическими свойствами, бензостойкая.

ЛКМС отличается повышенными эластичностью и диэлектрическими свойствами. Лакоткань ЛКМ отличается особой гибкостью и эластичностью – 10% удлинения при растяжке, благодаря такому свойству материал используют в качестве гибкого электроизоляционного материала в условиях работы при нормальной относительной влажности воздуха. ЛКМ легко выдерживает непродолжительное повышение температуры в процессе монтажа или пайки. Лакоткань ЛШМ обладает значительно меньшей усадкой, а так же меньшей стойкостью к кратковременным повышениям температуры.

Более высокие рабочие температуры – от 120 до 180 °C приемлемы для лакоткани, пропитанной кремнийорганической смолой или масляным лаком. Некоторые отдельные виды лакоткани, отличающиеся повышенными диэлектрическими характеристиками, могут быть использованы для работы в трансформаторном масле.

Стеклоткань ЭЗ-200 производится из стеклянных нитей полотняным переплетением.

Область применения.

Ткань используется при изготовлении кровельных материалов на основе полимерных связующих, материалов для электроизоляции и фольгированных диэлектриков, печатных плат и стеклопластиковых конструкций

Также стеклотканью выполняют тепловую изоляцию технических трубопроводов.

Стеклоткани ЭЗ-200 на прямом замасливателе незаменимы при производстве стеклопластика на основе эфирных и эпоксидных смол.

Материал химически устойчив, абсолютно пожаробезопасен (негорючесть и невосполоменяемость - одно из главных достоинств стеклотканей), выдерживает диапазон температур от -200°С до +550° С.

Стеклоткань - долговечный и экологически чистый материал, обладающий высокой стойкостью к разложению, не подвержен коррозии и механическому износу.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]