
- •1)Классификация электротехнических материалов
- •2) Проводниковые материалы – общая характеристика, основные требования
- •3) Обзор основных групп проводниковых материалов
- •4) Основные электрические свойства проводниковых материалов.
- •5) Требования к физическим свойствам проводниковых материалов
- •6) Основные виды проводниковых электротехнических изделий.
- •7) Потери энергии в проводниковых материалах. Понятие термической стойкости.
- •8) Поверхностный эффект и его влияние на проводимость изделий.
- •9) Магнитные свойства вещества. Классификация ферромагнитных материалов.
- •15) Потери от вихревых токов – причины возникновения и зависимости.
- •21) Общая характеристика и классификация изоляционных материалов.
- •22) Потери энергии в диэлектриках.
- •29) Алюминий и его сплавы
- •43) Керамические изоляционные материалы
29) Алюминий и его сплавы
Алюминий и ряд сплавов на его основе находят применение в электротехнике, благодаря хорошей электропроводности, коррозионной стойкости, небольшому удельному весу, и, что немаловажно, меньшей стоимостью, по сравнению с медью и ее проводниковыми сплавами.
В зависимости от величины удельного электросопротивления, алюминиевые сплавы подразделяют на проводниковые и сплавы с повышенным электрическим сопротивлением.
Удельная электрическая проводимость электротехнического алюминия марок А7Е и А5Е составляет порядка 60% от проводимости отожженной меди по международному стандарту. Технический алюминий АД0 и электротехнический А5Е используют для изготовления проводов, кабелей и шин. Применение в электротехнической промышленности получили низколегированные сплавы алюминия системы Al-Mg-Si АД31, АД31Е.
В земной коре содержится 8,8% алюминия. Это третий по распространенности в природе элемент после кислорода и кремния и первый — среди металлов. Он входит в состав глин, полевых шпатов, слюд. Известно несколько сотен минералов Al (алюмосиликаты, бокситы, алуниты и другие). Важнейший минерал алюминия — боксит содержит 28-60% глинозема — оксида алюминия Al2O3.
В чистом виде алюминий впервые был получен датским физиком Х. Эрстедом в 1825 году, хотя и является самым распространенным металлом в природе.
Производство алюминия осуществляется электролизом глинозема Al2O3 в расплаве криолита NaAlF4 при температуре 950°C.
Основные характеристики алюминия: плотность — 2,7×103 кг/м3, удельная теплоемкость алюминия при 20°C — 0,21 кал/град, температура плавления — 658,7°C, температура кипения алюминия — 2000°C, коэффициент линейного расширения алюминия (при температуре около 20°C) : — 22,9 × 106(1/град)
Сплавы алюминия, повышающие его прочность и улучшающие другие свойства, получают введением в него легирующих добавок, таких, как медь, кремний, магний, цинк, марганец.
Дуралюмин (дюраль, дюралюминий, от названия немецкого города, где было начато промышленное производство сплава) — плав алюминия (основа) с медью (Cu: 2,2-5,2%), магнием (Mg: 0,2-2,7%) марганцем(Mn: 0,2-1%). Подвергается закалке и старению, часто плакируется алюминием. Является конструкционным материалом дла авиационного и транспортного машиностроения.
Силумин — легкие литейные сплавы алюминия (основа) с кремнием (Si: 4-13%), иногда до 23% и некоторыми другими элементами: Cu, Mn, Mg, Zn, Ti, Be). Из него изготавливают детали сложной конфигурации, главным образом в авто- и авиастроении. Магналии — сплавы алюминия (основа) с магнием (Mg: 1-13%) и другими элементами, обладающие высокой коррозийной стойкостью, хорошей свариаемостью, высокой пластичностью. Из них изготавливают фасонные отливки (литейные магналии), листы, проволоку, заклепки и т. д. (деформируемые магналии).
По широте применения сплавы алюминия занимают второе место после стали и чугуна.
30) По масштабам применения алюминий и его сплавы занимают второе место после железа и его сплавов. Широкое применение алюминия в различных областях техники и быта связано с совокупностью его физических, механических и химических свойств: малой плотностью, коррозионной стойкостью в атмосферном воздухе, высокой тепло- и электропроводностью, пластичностью и сравнительно высокой прочностью. Алюминий легко обрабатывается различными способами — ковкой, штамповкой, прокаткой и др.
Чистый алюминий применяют для изготовления проволоки (электропроводность алюминия составляет 65,5% от электропроводности меди, но алюминий более чем в три раза легче меди, поэтому алюминий часто заменяет медь в электротехнике) и фольги, используемой как упаковочный материал. Основная же часть выплавляемого алюминия расходуется на получение различных сплавов. Сплавы алюминия отличаются малой плотностью, повышенной (по сравнению с чистым алюминием) коррозионной стойкостью и высокими технологическими свойствами: высокой тепло- и электропроводностью, жаропрочностью, прочностью и пластичностью. На поверхности сплавов алюминия легко наносятся защитные и декоративные покрытия.
Сплавы алюминия находят широкое применение в быту, в строительстве и архитектуре, в автомобилестроении, в судостроении, авиационной и космической технике. В частности, из алюминиевого сплава был изготовлен первый искусственный спутник Земли. Сплав алюминия и циркония — циркалой — широко применяют в ядерном реакторостроении. Алюминий применяют в производстве взрывчатых веществ. Алюмотол, литая смесь тринитротолуола с порошком алюминия, – одно из самых мощных промышленных взрывчатых веществ. Аммонал – взрывчатое вещество, состоящее из аммиачной селитры, тринитротолуола и порошка алюминия. Зажигательные составы содержат алюминий и окислитель – нитрат, перхлорат. Пиротехнические составы «Звездочки» также содержат порошкообразный алюминий. Смесь порошка алюминия с оксидами металлов (термит) применяют для получения некоторых металлов и сплавов, для сварки рельсов, в зажигательных боеприпасах.
32. Проводниковые материалы с большим удельным сопротивлением, это сплавы имеющие при нормальных условиях удельное электрическое сопративление не мение 0,3 мкОм.м. Они применяются при изготовлении различных электроизмерительных и электронагревательных приборах, оброзцовых сопративлениях, реастатов и т.д.
33. Нихромы – сплавы на основе железа, содержащие в зависимости от марки 15..25% хрома, 55..78% никеля, 1,5% марганца. Они в основном применяются для изготовления электронагревательных элементов так как обладают хорошей стойкостью при высокой температуре в воздушной среде, что обусловлено близкими значениями температурных коэффициентов линейного расширения этих сплавов и их оксидных пленок. Нихромы имеют высокую технологичность, легко протягиваются в проволоку или ленту.
34. Электротехническая листовая сталь обладает хорошими магнитными характеристиками - высокой индукцией насыщения, малой коэрцитивной силой и малыми потерями на гистерезис. Благодаря этим свойствам она широко используется в электротехнике для изготовления сердечников статоров и роторов электрических машин, сердечников силовых трансформаторов, трансформаторов тока и магнитопроводов различных электрических аппаратов. Листы текстурованной стали изготовляются холодной прокаткой. Магнитная проницаемость их выше, а потери на гистерезис меньше, чем у горячекатаных листов. Кроме того, у холоднокатаной стали индукция в слабых магнитных полях возрастает сильнее, чем у горячекатаной, т. е. кривая намагничивания в слабых полях располагается значительно выше кривой горячекатаной стали.
35. Благодаря уникальному сочетанию высоких магнитных свойств и низкой электропроводности ферриты не имеют конкурентов среди других магнитных материалов в технике высоких частот (более 100 кГц). Ферриты используют в качестве магнитных материалов в радиотехнике, электронике, автоматике, вычислительной технике (ферритовые поглотители электромагнитных волн, антенны, сердечники, элементы памяти, постоянные магниты и т. д.).
36. Пермаллои относятся к магнитомягким материалам, обладающие высокой магнитной проницаемостью в слабых полях, и представляют собой железноникилевые сплавы. Такие сплавы характеризуются тем, что значение магнитной анизотропии и магнитострикции равно нулю; это является одной из причин особенно легкого намагничивания пермалоев. Используются для малогабаритных силовых трансформаторов, дроселей, реле, магнитных экранов, сердечников импульсных трансформаторов, магнитных усилителей. магнитная проницаемость высоконикелевых пермаллоев выше, чем низконикелевых, и значительно превосходит проницаемость электротехнических сталей, но индукция насыщения пермаллоев в 1,5—2 раза меньше; следовательно, их нецелесообразно применять в силовых трансформаторах и других устройствах, в которых используется большой магнитный поток. Удельное электрическое сопротивление низконикелевых пермаллоев в два раза выше высоконикелевых, поэтому они могут работать на более высоких частотах
37. постоянные магниты на основе железа и родственных элементов. Бариевые и стронциевые магнитотвердые ферриты. Имеют состав Ba/SrO•6 Fe2O3 и характеризуются высокой устойчивостью к размагничиванию в сочетании с хорошей коррозионной стойкостью. Несмотря на низкие по сравнению с другими классами магнитные параметры и высокую хрупкость, благодаря низкой стоимости магнитотвердые ферриты наиболее широко применяются в промышленности.
Магниты ALNICO (российское название ЮНДК).
Изготавливаются основе сплава Al-Ni-Co-Fe. К их преимуществам можно отнести высокую температурную стабильность в интервале температур до 550 °C, высокую временну́ю стабильность параметров в сочетании с большой величиной коэрцитивной силы, хорошую коррозионную устойчивость. Важным фактором в пользу их выбора может являться значительно меньшая стоимость по сравнению с магнитами из Sm-Co.
38. Постоянные магниты на основе редкоземельных. Магниты NdFeB (неодим-железо-бор).Редкоземельные магниты, изготавливаемые прессованием или литьем из интерметаллида Nd2Fe14B. Преимуществами этого класса магнитов являются высокие магнитные свойства (Br, Hc и (BH)max), а также невысокая стоимость. В связи со слабой коррозионной устойчивостью обычно покрываются медью, никелем или цинком.
Редкоземельные магниты SmCo (Самарий-Кобальт)
Изготавливаются методом порошковой металлургии из композиционного сплава SmCo5/Sm2Co17 и характеризуются высокими магнитными свойствами, отличной коррозионной устойчивостью и хорошей стабильностью параметров при температурах до 350 °C, что обеспечивает им преимущества на высоких температурах перед магнитами NdFeB
39. Кремний является базовым материалом полупроводниковой электроники. Он используется как для создания интегральных микросхем, так и для изготовления дискретных полупроводниковых приборов. Из кремния изготавливаются различные типы полупроводниковых диодов: низкочастотные (высокочастотные), маломощные (мощные), полевые транзисторы, стабилитроны, тиристоры.
40. Германий применяется для изготовления диодов различных типов, транзисторов, датчиков ЭДС Холла, тензодатчиков. Оптические свойства германия позволяют использовать его для изготовления фотодиодов и фоторезисторов, модуляторов света, оптических фильтров, а также счетчиков ядерных частиц.
Германий используется в производстве полупроводниковых приборов: транзисторов и диодов. Германиевые транзисторы и детекторные диоды обладают характеристиками, отличными от кремниевых, ввиду меньшего напряжения отпирания p-n-перехода в германии — 0,35...0,4 В против 0,6...0,7 В у кремниевых приборов[14]. Кроме того, обратные токи у германиевых приборов на несколько порядков больше таковых у кремниевых — скажем, в одинаковых условиях кремниевый диод будет иметь обратный ток 10 пА, а германиевый — 100 нА, что в 10000 раз больше[15]. До 1960-х гг. германиевые полупроводниковые приборы использовались повсеместно. По советскому ГОСТ 10862-64 (1964 г.) и более поздним стандартам германиевые полупроводниковые приборы имеют обозначение, начинающиеся с буквы Г или цифры 1, например: ГТ313, 1Т308 — высокочастотные маломощные транзисторы, ГД507 — импульсный диод. До того транзисторы имели индексы, начинающиеся с букв С, Т или П (МП), а диоды — Д, и определить материал прибора по индексу было невозможно; впрочем, большинство из них были германиевые. В настоящее время германиевые диоды и транзисторы практически полностью вытеснены кремниевыми. Теллурид германия применяется как стабильный термоэлектрический материал и компонент термоэлектрических сплавов
41) Электротехническое стекло, стекло, обладающее определёнными электрическими свойствами и применяемое в электротехнике и электронике в качестве изоляционных и конструкционных материалов. Электроизоляционное стекло применяют для изготовления изоляторов линий электропередач, герметичных вводов и разъёмов, конденсаторов; стеклянную ткань и стеклопластики - для изоляции деталей электрических машин и устройств. В тонкой стеклянной изоляции выпускается микропровод. Для электроизоляции используют бесщелочные и малощелочные алюмосиликатные стекла, обладающие высокими электросопротивлением и влагостойкостью, электрической и термической прочностью.
Электровакуумное стекло - основной конструкционный материал в электровакуумном приборостроении и производстве источников света. Из него изготовляют электронные лампы, электроннолучевые и рентгеновские трубки, фотоумножители, счётчики частиц, лампы накаливания, газоразрядные лампы, галогенные лампы, импульсные источники света и. т. д. Из электровакуумного стекла делают оболочки, держатели и изоляторы электродов («ножки»), а также герметичные выводы электровакуумных и полупроводниковых приборов с металлическим корпусом. Электровакуумные стекла должны иметь высокие диэлектрические характеристики и (во избежание растрескивания спаев) согласованный с металлами (или стеклами) коэффициент теплового расширения (КТР) a. По значению КТР и следовательно, возможности спаивания с соответствующими металлами электровакуумные стекла разделяют на следующие основные группы (a×107 град-1): кварцевая (6-10), вольфрамовая (37-40), молибденовая (47-50), титановая (72-75), платинитовая (84-92), железная (110-120).
Для спаивания металлов и стекол со значительной разницей в КТР (например кварцевого стекла) используют последовательные спаи из нескольких стекол с небольшими отличиями в КТР (переходные стекла) или специальные переходы. В отечественной классификации электровакуумных стекол значение КТР указывается в марке стекла (например, стекло С49-2 имеет a = 49×10-7 град-1). В качестве электровакуумных стекол используют бромсиликатные, алюмосиликатные, щелочные и бесщелочные стекла, содержащие окислы щёлочноземельных металлов, свинца и др. Для изготовления мощных источников света применяют кварцевое и высоко- кремнезёмное (кварцоидное) стекла (94-96% SiO2).
В микроэлектронике тонкие (1-50 мкм) стеклянные плёнки используют для межслойной изоляции бескорпусной защиты интегральных схем, герметизации их корпусов и т. д. Для получения тонких плёнок применяют легкоплавкие бесщелочные боратные и боросиликатные стекла. Из стекол изготовляют некоторые типы корпусов интегральных схем.
42) Электроизоляционные лаки и эмали
Лаки — это растворы пленкообразующих веществ: смол, битумов, высыхающих масел, эфиров целлюлозы или композиций этих материалов в органических растворителях. В процессе сушки лака из него испаряются растворители, а в лаковой основе происходят физико-химические процессы, приводящие к образованию лаковой пленки. По своему назначению электроизоляционные лаки делят на пропиточные, покровные и клеящие.
Пропиточные лаки применяются для пропитки обмоток электрических машин и аппаратов с целью закрепления их витков, увеличения коэффициента теплопроводности обмоток и повышения их влагостойкости. Покровные лаки позволяют создать защитные влагостойкие, маслостойкие и другие покрытия на поверхности обмоток или пластмассовых и других изоляционных деталей. Клеящие лаки предназначаются для склеивания листочков слюды друг с другом или с бумагой и тканями с целью получения слюдяных электроизоляционных материалов (миканиты, микалента и др.).
Эмали представляют собой лаки с введенными в них пигментами — неорганическими наполнителями (окись цинка, двуокись титана, железный сурик и др.). Пигменты вводятся с целью повышения твердости, механической прочности, влагостойкости, дутостойкости и других свойств эмалевых пленок. Эмали относятся к покровным материалам.
По способу сушки различают лаки и эмали горячей (печной) и холодной (воздушной) сушки. Первые требуют для своего отверждения высокой температуры — от 80 до 200° С, а вторые высыхают при комнатной температуре. Лаки и эмали горячей сушки, как правило, обладают более высокими диэлектрическими, механическими и другими свойствами. С целью улучшения характеристик лаков и эмалей воздушной сушки, а также для ускорения отверждения их сушку иногда производят при повышенных температурах — от 40 до 80° С.
Основные группы лаков имеют следующие особенности. Масляные лаки образуют после высыхания гибкие эластичные пленки желтого цвета, стойкие к влаге и к нагретому минеральному маслу. По нагревостойкости пленки этих лаков относятся к классу А. В масляных лаках используют дефицитные льняное и тунговое масла, поэтому они заменяются лаками на синтетических смолах, более стойкими к тепловому старению.
Масляно-битумные лаки образуют гибкие пленки черного цвета, стойкие к влаге, но легко растворяющиеся в минеральных маслах (трансформаторное и смазочное). По нагревостойкости эти лаки относятся к классу А (105° С). Глифталевые и масляно-глифталевые лаки и эмали отличаются хорошей клеящей способностью по отношению к слюде, бумагам, тканям и пластмассам. Пленки этих лаков обладают повышенной нагревостойкостью (класс В). Они устойчивы к нагретому минеральному маслу, но требуют горячей сушки при температурах 120—130° С. Чисто глифталевые лаки на основе немодифицированных глифталевых смол образуют твердые негибкие пленки, применяемые в производстве твердой слюдяной изоляции (твердые миканиты). Масляно-глифталевые лаки после высыхания дают гибкие эластичные пленки желтого цвета.
Кремнийорганические лаки и эмали отличаются высокой нагревостойкостью и могут длительно работать при 180—200° С, поэтому они применяются в сочетании со стекловолокнистой и слюдяной изоляцией. Кроме этого, пленки обладают высокой влагостойкостью и стойкостью к электрическим искрам.
Лаки и эмали на основе полихлорвиниловых и перхлорвиниловых смол отличаются стойкостью к воде, нагретым маслам, кислым и щелочным химическим реагентам, поэтому они применяются в качестве покровных лаков и эмалей для защиты обмоток, а также металлических деталей от коррозии. Следует обратить внимание на слабое прилипание полихлорвиниловых и перхлорвиниловых лаков и эмалей к металлам. Последние вначале покрывают слоем грунта, а затем лаком или эмалью на основе полихлорвиниловых смол. Сушка этих лаков и эмалей производится при 20, а также при 50—60° С. К недостаткам такого рода покрытий относится их невысокая рабочая температура, составляющая 60—70° С.
Лаки и эмали на основе эпоксидных смол отличаются высокой клеящей способностью и несколько повышенной нагревостойкостью (до 130° С). Лаки на основе алкидных и фенольных смол (фенолоалкидные лаки) имеют хорошую высыхаемость в толстых слоях и образуют эластичные пленки, могущие длительно работать при температурах 120—130° С. Пленки этих лаков обладают влаго- и маслостойкостью.
Водно-эмульсионные лаки — это устойчивые эмульсии лаковых основ в водопроводной воде. Лаковые основы производят из синтетических смол, а также из высыхающих масел и их смесей. Водно-эмульсионные лаки пожаро- и взрывобезопасны, потому что в их составе нет легковоспламеняющихся органических растворителей. Из-за малой вязкости такие лаки имеют хорошую пропитывающую способность. Их применяют для пропитки неподвижных и подвижных обмоток электрических машин и аппаратов, длительно работающих при температурах до 105°
Электроизоляционные компаунды
Компаунды представляют собой изоляционные составы, которые в момент использования бывают жидкими, а затем отвердевают. Компаунды не имеют в своем составе растворителей. По своему назначению данные составы делятся на пропиточные и заливочные. Первые из них применяют для пропитки обмоток электрических машин и аппаратов, вторые — для заливки полостей в кабельных муфтах, а также в электромашинах и приборах с целью герметизации.
Компаунды бывают термореактивными (не размягчающимися после отвердевания) и термопластичными (размягчающимися при последующих нагревах). К термореактивным можно отнести компаунды на основе эпоксидных, полиэфирных и некоторых других смол. К термопластичным относятся компаунды на основе битумов, воскообразных диэлектриков и термопластичных полимеров (полистирол, полиизобутилен и др.). Пропиточные и заливочные компаунды на основе битумов по нагревостойкости относятся к классу А (105° С), а некоторые к классу Y (до 90° С). Наибольшей нагревостойкостыо обладают компаунды эпоксидные и кремнийорганические.
Компаунды МБК изготовляют на основе метакриловых эфиров и применяют как пропиточные и заливочные. Они после отвердевания при 70—100° С (а со специальными отвердителями при 20° С) являются термореактивными веществами, которые могут использоваться в интервале температур от —55 до +105° С.