- •Тема 1. Загальні відомості про двигуни внутрішнього згоряння та їх класифікація
- •Тема 2. Термодинамічні цикли поршневих двигунів
- •Коротка історична довідка про розвиток двигунів
- •Основні параметри автомобільних двигунів
- •Класифікація двигунів внутрішнього згоряння та вимоги до них.
- •1. Коротка історична довідка про розвиток двигунів
- •Основні параметри автомобільних двигунів
- •Тема №2. Термодинамічні цикли поршневих двигунів
- •2.1. Теоретичний цикл двигунів з підведенням теплоти при постійному об'ємі
- •2. 2. Теоретичний цикл двигунів з підведенням теплоти при постійному тиску
- •2.3. Теоретичний цикл двигунів з підведенням тепла при постійному об'ємі і постійному тиску (змішаний цикл)
- •Загальні відомості про паливо
- •2. Робочі тіла і властивості згорання
- •Загальні відомості про паливо
- •2. Робочі тіла і властивості згорання
- •Дійсні цикли двз
- •Особливості процесу впуску
- •1. Дійсні цикли двз
- •2. Процес впуску
- •2. Процес згорання палива в карбюраторному двигуні
- •3. Процес згорання палива в дизельному двигуні
- •Процес випуску
- •Способи зменшення токсичності
- •2. Параметри двигунів внутрішнього згорання
- •3. Характеристики двигунів внутрішнього згорання
- •Основні системи карбюратора
- •Сумішоутворення в бензинових двигунах
- •1. Процес розпилення палива
- •2. Вплив розпилення на процес сумішоутворення.
- •3 Сумішоутворення в нерозділених і напіврозділених камерах згоряння.
- •4 Сумішоутворення у розділених камерах згоряння.
- •2. Конструктивні особливості елементів системи упорскування легкого палива.
- •3. Необхідність ускладнення системи уприскування
- •Основні способи підвищення потужності двигунів.
- •Застосування наддуву в двигунах.
- •Основні способи підвищення потужності двигунів.
- •2. Застосування наддуву в двигунах.
- •2. Типи кривошипно-шатунних механізмів, основні поняття і позначення
- •Сили і моменти, які викликають не зрівноваженість двз
- •Врівноваженість двигунів
- •Особливості будови гільз циліндрів
- •Особливості будови корінних опор колінчастих валів
- •Конструкція поршневої групи.
- •Конструкція шатунної групи.
- •1 Конструкція поршневої групи
- •Шатунна група
- •2. Матеріали і способи одержання заготовок
- •3 Основні елементи колінчастого валу і їх характеристики
- •4 Методи зміцнення колінчастого вала
- •2. Типи грм та їх порівнювальна оцінка.
- •3. Конструкція, матеріал виготовлення деталей грм
- •2. Конструктивні особливості будови систем мащення
- •3. Система мащення із «сухим» картером
- •2. Конструктивні особливості рідинної системи охолодження
- •3 Конструктивні особливості повітряної системи охолодження
- •4. Регулювання температурного режиму системи охолодження
- •Список використаної літератури
3 Сумішоутворення в нерозділених і напіврозділених камерах згоряння.
Нерозділені і напіврозділені камери згоряння найчастіше використовуються в автомобільних дизелях із значним діаметром циліндра (D≥100 мм). Головні їх переваги: простота конструкції, можливість забезпечення найвищої паливної економічності дизеля при порівняно невеликих ступенях стиску і непогані пускові якості. Основні недоліки дизелів з нерозділеними камерами пов'язані з гіршою якістю сумішоутворення на нерозрахункових режимах роботи внаслідок порушення узгодження характеристик впорскування і направленого руху повітряного заряду; високою жорсткістю роботи дизеля; підвищеними вимогами до паливної апаратури. У нерозділених і напіврозділених камерах згоряння реалізується один з трьох способів сумішоутворення: об'ємне, плівкове і об'ємноплівкове.
Об'ємне сумішоутворення здійснюється в нерозділених (однопорожнинних) неглибоких, значного діаметра (dK3/D = 0,75...0,85) камерах згоряння, наприклад, типу «Гесельман» (рис.9.3, а). При цьому способі основна частина палива вприскується і розміщується в об'ємі над поршнем Значна доля енергії, яка витрачається на сумішоутворення, складається із кінетичної енергії впорскування і розпилювання палива.
Рисунок 9.3 - Нерозділені камери згоряння
а – типу «Гесельман»; б – типу «Дойтц»; в – типу ЯМЗ; г – типу ЦНДДІ
Тому паливна апаратура повинна забезпечити проникнення факелів розпиленого палива до периферії камери згоряння, максимально заповнити ними і їх парою весь її об'єм, а всередині факелів забезпечити дрібне і однорідне розпилювання і рівномірний розподіл крапель палива. Ці вимоги жорсткі і суперечливі. Вони забезпечуються шляхом узгодження різних параметрів і факторів. Необхідна далекобійність факелів розпиленого палива забезпечується підбором розмірів соплових отворів форсунки (діаметр отворів 0,15...0,25 мм) і максимального тиску впорскування (80...100 МПа і вище); заповнення об'єму камери згоряння факелами розпиленого палива - кількістю отворів розпилювання (6...10); дрібність і однорідність розпилення - застосуванням високого тиску впорскування і отворів розпилювання форсунок малого діаметра тощо. Перелічені вимоги до паливної апаратури ускладнюють її конструкцію і знижують надійність в експлуатації.
Для забезпечення ефективного сумішоутворення у циліндрах цих дизелів створюється направлений рух повітряного заряду, узгоджений за інтенсивністю з кількістю паливних факелів. Енергія його повинна бути такою, щоб за час впорскування кут оберту повітряного заряду в циліндрі приблизно дорівнював кутові між проекціями осей отворів розпилювання на площину, перпендикулярну до осі циліндра. При цьому заряд, який рухається, заповнює дрібними каплями і парою палива міжфакельний простір. Досвід свідчить, що однаково погіршує показники дизеля як надмірна (перезавихрювання), так і недостатня (недовихрювання) інтенсивність руху заряду.
Утворення направленого руху заряду необхідної інтенсивності досягається різними конструктивними засобами. В чотиритактних двигунах сумарний ефект звичайно досягається шляхом застосування тангенціальних або гвинтових впускних каналів і за рахунок ефекту перетікання заряду з об'єму, розташованого над витискаючою поверхнею поршня, у порожнину, що міститься у днищі поршня.
Теплообмін між повітряним зарядом і паливом, який забезпечує випаровування останнього, відбувається переважно в об'ємі факела розпиленого палива. Тому деформація факелів, що рухаються, збільшує об'єм і прискорює сумішоутворення. Змішування пари палива з повітрям відбувається завдяки дифузії: пара палива дифундує у напрямку поверхні факела, де концентрація палива значно менша, ніж у ядрі. Досліди свідчать, що значний вплив на якість сумішоутворення має теплообмін у верхівках паливних факелів.
Параметри, якими характеризується об’ємне сумішоутворення:
=
1,4…1,8;
W
= 0,5…1,5 МПа/град; Рz
=
7,5…9,0 МПа; ge
=
225…255 г/квт•год.
Переваги: достатня економічність, високі пускові властивості, відносна простота конструкції головки, висока літрова потужність.
Недоліки: жорстка робота; мала довговічність; підвищене значення коефіцієнта надлишку повітря .
Плівкове сумішоутворення здійснюється у напіврозділених камерах. При плівковому сумішоутворенні основну частину порції палива (до 90...95%), яке впорскується, подають на нагріту стінку камери згоряння в поршні під невеликим кутом, що створює умови для розтікання палива по стінці тонким шаром, а біля стінки забезпечують рух заряду з такою швидкістю, щоб був гарантований інтенсивний відтік пари палива від плівки, і щоб плівка при цьому не руйнувалась (рис. 9.3, б). Спочатку самозаймаються пари тієї частки палива (5 - 10%), що подається в об'єм. Ефективність сумішоутворення досягається оптимальним поєднанням товщі плівки, інтенсивності руху повітряного заряду над нею і температури стінки камери згоряння. Остання має переважне значення при сумішоутворенні і може регулюватися підбором товщини стінки камери згоряння і інтенсивності охолодження поршня. Спрямований рух повітряного заряду необхідної швидкості, як і при об'ємному сумішоутворенні, забезпечується за рахунок надання зарядові руху високої інтенсивності у впускному каналі і ефективного витиснення його з над поршневої щілини.
Параметри, якими характеризується об’ємне сумішоутворення:
= 1,3…1,4; W = 1,0 МПа/град; Рz = 6,5…8,0 МПа; ge = 220…240 г/квт•год.
Переваги: висока економічність, менша жорсткість та максимальний тиск циклу.
Недоліки: Гірші пускові властивості холодного двигуна та підвищена токсичність на режимі малих і часткових навантажень; приводить до неможливості значного форсування дизеля наддувом через високу температуру деталей камери згоряння; ускладнює доводку робочого процесу.
Об’ємно-плівкове сумішоутворення здійснюється в напіврозділених камерах згоряння з відношенням dKЗ/D = 0,5...0,6. При цьому способі 40...60% циклової порції палива досягає стінок камери згоряння у поршні (рис. 9.3, в). Попадання палива на стінку спочатку значно зменшує швидкість його випаровування, а тому й швидкість утворення паливоповітряної суміші. Завдяки цьому знижується жорсткість роботи дизеля. Після початку згоряння і підвищення температури заряду швидкість випаровування і змішування зростає, тому завершення згоряння порівняно з об'ємним способом не дуже запізнюється. Саме це дає можливість зберегти високу економічність циклу. Важливе значення для якісного сумішоутворення у цих дизелів мають складові швидкості руху повітряного заряду, які пов'язані з напрямком і інтенсивністю перетікання його з надпоршневого простору. Перетворені із радіальних в осьові (направлені вздовж осі циліндра), вони захоплюють пару, дрібні каплі у пристінній зоні, продукти згоряння і переносять їх у глибину камери згоряння у поршні. При ході розширення під час зворотного перетікання заряду частина палива, що не згоріла, і продукти неповного згоряння переносяться в об'єм над поршнем, де знаходиться ще не використане для згоряння повітря. Це активізує сумішоутворення і догоряння.
При цьому способі сумішоутворення максимальний тиск впорскування, як правило, не перевищує 40...50 МПа, і можна застосовувати розпилювачі з чотирма-п'ятьма отворами відносно значного діаметра 0,3...0,45 мм. Є також можливість для зміщення осі камери згоряння й розпилювача відносно осі циліндра з метою збільшення діаметра впускного клапана для забезпечення кращого наповнення циліндра свіжим зарядом.
Основними недоліками двигуна з цим способом сумішоутворювання є: більша висота головки поршня; високе теплове навантаження поршня (особливо кромок горловини камери згоряння) і головки циліндрів; необхідність роботи з більшим надлишком повітря у зв'язку з малим відносним об'ємом камери згоряння.
Особливості сумішоутворення при наддуві. При наддуві дизеля підвищується густина, а часто і температура заряду у циліндрі. Процеси окислення прискорюються, тому виникає необхідність в підвищенні пробивної сили факелів розпиленого палива. У той же час збільшується циклова подача палива, а тривалість впорскування бажано зберегти таку ж саму, як у дизелях без наддуву. З підвищенням частоти обертання колінчастого вала і навантаження внаслідок збільшення густини заряду і скорочення періоду затримки самозаймання суміші необхідно забезпечити більш різке зростання тиску впорскування для того, щоб зберегти необхідну ефективність сумішоутворювання і згоряння.
Ці вимоги задовольняються шляхом підвищення максимального тиску впорскування, який у сучасних дизелях досягає 160...200 МПа, зменшенням діаметру соплових каналів розпилювачів форсунок до 0,15...0,18 мм і збільшенням їх кількості до 7...8.
