
- •1.Основные понятия комбинаторики
- •2.Предмет теории вероятности.
- •3.Случайные события и их классификация
- •4. Вероятность события
- •5.Аксиоматическое определение вероятности
- •6.Геометрические вероятности
- •7.Относительная частота случайного события, ее устойчивость
- •8. Статистическое определение вероятностей
- •9. Сумма и произведение событий
- •10. Теоремы сложения вероятностей
- •11. Теоремы умножения вероятностей
- •12. Формула полной вероятности
- •13. Формула апостериорной вероятности Байеса.
- •14. Повторение испытаний.
- •16. Теорема Лапласа
- •17. Дискретные и непрерывные случайные величины.
- •18. Понятие случайной величины
- •19. Способы задания случайных величин.
- •20.Биномиальное распределение.
- •21. Распределение пуассона.
- •22. Функция распределения
- •23. Плотность распределения
- •24. Свойства функций распределения
- •25. Числовые характеристики случайных величин
- •26. Вероятностный смысл характеристик
- •27. Равномерное и показательное распределение
- •28. Нормальное распределение Гаусса
- •29. Функции от случайных величин
- •30. Двумерная случайная величина
- •31.Закон распределения вероятностей двумерной случайной величины
- •32. Сходимость по вероятности Пусть - вероятностное пространство с определёнными на нём случайными величинами .
- •33.Предельные теоремы
- •Неравенство Чебышева
- •Теорема Чебышева
- •Теорема Бернулли
- •34.Специальные методы решения вер-х задач
- •35.Специальные распределения вероятностей
- •36.Случайный процесс
- •Определение
- •Терминология
- •Классификация
- •37. Стационарные случайные процессы.
- •38.Корреляционные функции и спектральные плотности
- •39.Действия над случайними процессами
- •40.Предмет и задачи математической статистики
- •41. Генеральная совокупность и выборка
- •42. Статистический ряд
- •43. Статистические оценки параметров распределения
- •44. Числовые характеристики статистического распределения
- •45. Точечные и интервальные оценки параметров распределения
- •46. Построение - доверительный интервал
- •47. Доверительный интервал для нормального распределения
- •48.Доверительный интервал при Распределе́ние Стью́дента
- •Определение
- •Использование t-распределения
- •49. Статическая проверка статических гипотез:понятие и виды Определения
- •50. Проверка пирсона
- •51. Критерий Колмогорова-Смирнова
- •52. Статистический анализ случайных процессов
- •54. Система массового обслуживания: определение и понятие
26. Вероятностный смысл характеристик
Вероя́тность — степень (мера, количественная оценка) возможности наступления некоторого события. Когда основания для того, чтобы какое-нибудь возможное событие произошло в действительности, перевешивают противоположные основания, то это событие называют вероятным, в противном случае — невероятным или маловероятным. Перевес положительных оснований над отрицательными, и наоборот, может быть в различной степени, вследствие чего вероятность (и невероятность) бывает большей или меньшей[1]. Поэтому часто вероятность оценивается на качественном уровне, особенно в тех случаях, когда более или менее точная количественная оценка невозможна или крайне затруднительна. Возможны различные градации «уровней» вероятности[2].
27. Равномерное и показательное распределение
Равномерная.Непрерывная случайная величина , принимающая значения на отрезке [a, b], распределена равномерно на [a, b], если ее плотность распределения p (x) и функция распределения Fx (x) имеют соответственно вид:
,
.
Показательное. Непрерывная случайная величина имеет показательное распределение с параметром > 0, если она принимает только неотрицательные значения, а ее плотность распределения p (x )и функция распределения F (x) имеют соответственно вид:
,
.
28. Нормальное распределение Гаусса
Нормальное распределение,[1][2] также называемое распределением Гаусса — распределение вероятностей, которое в одномерном случае задается функцией плотности вероятности, совпадающей с функцией Гаусса:
где параметр μ — математическое ожидание, медиана и мода распределения, а параметр σ — стандартное отклонение (σ² — дисперсия) распределения.
Таким образом, одномерное нормальное распределение является двухпараметрическим семейством распределений. Многомерный случай описан в многомерном нормальном распределении.
Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием μ = 0 и стандартным отклонением σ = 1.
29. Функции от случайных величин
Закон распределения вероятностей функции одной случайной величины
При решении задач, связанных с оценкой точности работы различных автоматических систем, точности производства отдельных элементов систем и др., часто приходится рассматривать функции одной или нескольких случайных величин. Такие функции также являются случайными величинами. Поэтому при решении задач необходимо знать законы распределения фигурирующих в задаче случайных величин. При этом обычно известны закон распределения системы случайных аргументов и функциональная зависимость.
Таким образом, возникает задача, которую можно сформулировать так.
Дана
система случайных величин
,
закон распределения которой известен.
Рассматривается некоторая случайная
величина Y как функция данных случайных
величин:
(6.1) |
Требуется
определить закон распределения случайной
величины
,
зная вид функций (6.1) и закон совместного
распределения ее аргументов.
Рассмотрим задачу о законе распределения функции одного случайного аргумента
Пусть
—
дискретная случайная величина, имеющая
ряд распределения
Тогда
также
дискретная случайная величина с
возможными значениями
.
Если все значения
различны,
то для каждого
события
и
тождественны.
Следовательно,
и искомый ряд распределения имеет вид
Если
же среди чисел
есть
одинаковые, то каждой группе одинаковых
значений
нужно
отвести в таблице один столбец и
соответствующие вероятности сложить.
Для
непрерывных случайных величин задача
ставится так: зная плотность
распределения
случайной
величины
,
найти плотность распределения
случайной
величины
.
При решении поставленной задачи
рассмотрим два случая.
Предположим
сначала, что функция
является
монотонно возрастающей, непрерывной и
дифференцируемой на интервале
,
на котором лежат все возможные значения
величины
.
Тогда обратная функция
существует,
при этом являясь также монотонно
возрастающей, непрерывной и дифференцируемой.
В этом случае получаем
(6.2) |