
- •1.Основные понятия комбинаторики
- •2.Предмет теории вероятности.
- •3.Случайные события и их классификация
- •4. Вероятность события
- •5.Аксиоматическое определение вероятности
- •6.Геометрические вероятности
- •7.Относительная частота случайного события, ее устойчивость
- •8. Статистическое определение вероятностей
- •9. Сумма и произведение событий
- •10. Теоремы сложения вероятностей
- •11. Теоремы умножения вероятностей
- •12. Формула полной вероятности
- •13. Формула апостериорной вероятности Байеса.
- •14. Повторение испытаний.
- •16. Теорема Лапласа
- •17. Дискретные и непрерывные случайные величины.
- •18. Понятие случайной величины
- •19. Способы задания случайных величин.
- •20.Биномиальное распределение.
- •21. Распределение пуассона.
- •22. Функция распределения
- •23. Плотность распределения
- •24. Свойства функций распределения
- •25. Числовые характеристики случайных величин
- •26. Вероятностный смысл характеристик
- •27. Равномерное и показательное распределение
- •28. Нормальное распределение Гаусса
- •29. Функции от случайных величин
- •30. Двумерная случайная величина
- •31.Закон распределения вероятностей двумерной случайной величины
- •32. Сходимость по вероятности Пусть - вероятностное пространство с определёнными на нём случайными величинами .
- •33.Предельные теоремы
- •Неравенство Чебышева
- •Теорема Чебышева
- •Теорема Бернулли
- •34.Специальные методы решения вер-х задач
- •35.Специальные распределения вероятностей
- •36.Случайный процесс
- •Определение
- •Терминология
- •Классификация
- •37. Стационарные случайные процессы.
- •38.Корреляционные функции и спектральные плотности
- •39.Действия над случайними процессами
- •40.Предмет и задачи математической статистики
- •41. Генеральная совокупность и выборка
- •42. Статистический ряд
- •43. Статистические оценки параметров распределения
- •44. Числовые характеристики статистического распределения
- •45. Точечные и интервальные оценки параметров распределения
- •46. Построение - доверительный интервал
- •47. Доверительный интервал для нормального распределения
- •48.Доверительный интервал при Распределе́ние Стью́дента
- •Определение
- •Использование t-распределения
- •49. Статическая проверка статических гипотез:понятие и виды Определения
- •50. Проверка пирсона
- •51. Критерий Колмогорова-Смирнова
- •52. Статистический анализ случайных процессов
- •54. Система массового обслуживания: определение и понятие
11. Теоремы умножения вероятностей
Вероятность произведения двух событий равна вер-ти одного из них, умноженной на условную вероятность другого при наличии первого:
Р (АВ) = Р(А) · Р(В/А), или Р (АВ) = Р(В) · Р(А/В).
Следствие. Вероятность совместного наступления двух независимых событий А и В равна произведению вероятностей этих событий:
Р (АВ) = Р(А) · Р(В).
Следствие. При производимых n одинаковых независимых испытаниях, в каждом из которых события А появляется с вероятностью р, вероятность появления события А хотя бы один раз равна 1 - (1 - р)n
12. Формула полной вероятности
Формула полной вероятности позволяет вычислить вероятность интересующего события через условные вероятности этого события в предположении неких гипотез, а также вероятностей этих гипотез.
Если событие А может произойти только при выполнении одного из событий , которые образуют полную группу несовместных событий, то вероятность события А вычисляется по формуле
.
13. Формула апостериорной вероятности Байеса.
Пусть
— полная
группа событий,
и
—
некоторое событие, вероятность которого
положительна. Тогда условная вероятность
того, что имело место событие
,
если в результате эксперимента наблюдалось
событие
,
может быть вычислена по формуле:
14. Повторение испытаний.
Формула Бернулли
где
-
вероятность появления события A ровно k раз
при n независимых
испытаниях; p -
вероятность появления события A при
каждом испытании.
Вероятность того, что при этом событие A:
1)
наступит n раз:
;
2)
не наступит ни разу:
;
3)
наступит хотя бы один раз:
;
4)
наступит не более k раз:
;
5)
наступит не менее k раз:
.
ле:
16. Теорема Лапласа
Пусть A – квадратная матрица n-го порядка. Определитель k-го порядка, составленный из элементов матрицы A, расположенных на пересечении строк с номерами i1 , i2 , ..., ik и столбцов с номерами j1 , j2 , ..., jk , называется минором M k-го порядка матрицы A. Если из матрицы A вычеркнуть строки и столбцы с такими номерами, то определитель n–k-го порядка полученной матрицы называется дополнительным минором для минора M. Обозначим символом S сумму индексов, нумерующих строки и столбцы такого минора:
S = i1 + j1 + i2 + j2 + ... + ik + jk .
Алгебраическим дополнением минора M называется дополнительный минор для минора M, умноженный на (–1)S. Отметим, что алгебраическое дополнение Ai j элемента ai j (минора первого порядка) является частным случаем алгебраического дополнения минора. Теорема Лапласа. Пусть D – определитель n-го порядка, в котором произвольно выбраны k строк (или столбцов), где 1 ≤k ≤ n – 1. Тогда определитель D равен сумме произведений всех миноров k-го порядка, расположенных в выбранных строках (или столбцах), на их алгебраические дополнения.
17. Дискретные и непрерывные случайные величины.
В том случае, если случайное событие выражается в виде числа, можно говорить о случайной величине.Случайной называют величину, которая в результате испытания примет одно возможное значение, наперёд неизвестное и зависящее от случайных причин, которые заранее не могут быть учтены.
Выпадение некоторого значения случайной величины Х это случайное событие: Х = хi. Среди случайных величин выделяют дискретные и непрерывные случайные величины.
Дискретной случайной величиной называется случайная величина, которая в результате испытания принимает отдельные значения с определёнными вероятностями. Число возможных значений дискретной случайной величины может быть конечным и бесконечным. Примеры дискретной случайной величины: запись показаний спидометра или измеренной температуры в конкретные моменты времени.
Непрерывной случайной величиной называют случайную величину, которая в результате испытания принимает все значения из некоторого числового промежутка. Число возможных значений непрерывной случайной величины бесконечно. Пример непрерывной случайной величины: измерение скорости перемещения любого вида транспорта или температуры в течение конкретного интервала времени.
Любая случайная величина имеет свой закон распределения вероятностей и свою функцию распределения вероятностей. Прежде, чем дать определение функции распределения, рассмотрим переменные, которые её определяют. Пусть задано некоторое х – действительное число и получена случайная величина X, при этом (x>X). Требуется определить вероятность того, что случайная величина Х будет меньше этого фиксированного значения х.
Функцией распределения случайной величины Х называется функция F(х), определяющая вероятность того, что случайная величина Х в результате испытания примет значение меньшее значения х, то есть:
|
F (х) = Р(Х < х ). |
(5.1) |
где х – произвольное действительное число.
Случайная величина (непрерывная или дискретная) имеет численные характеристики:
Математическое ожидание М (Х). Эту характеристику можно сравнивать со средним арифметическим наблюдаемых значений случайной величины Х.
Дисперсия D(X). Это характеристика отклонения случайной величины Х от математического ожидания.
Среднее квадратическое отклонение s(Х) для дискретной и непрерывной случайной величины Х – это корень квадратный из ее дисперсии:
|
|