
- •1.Основные понятия комбинаторики
- •2.Предмет теории вероятности.
- •3.Случайные события и их классификация
- •4. Вероятность события
- •5.Аксиоматическое определение вероятности
- •6.Геометрические вероятности
- •7.Относительная частота случайного события, ее устойчивость
- •8. Статистическое определение вероятностей
- •9. Сумма и произведение событий
- •10. Теоремы сложения вероятностей
- •11. Теоремы умножения вероятностей
- •12. Формула полной вероятности
- •13. Формула апостериорной вероятности Байеса.
- •14. Повторение испытаний.
- •16. Теорема Лапласа
- •17. Дискретные и непрерывные случайные величины.
- •18. Понятие случайной величины
- •19. Способы задания случайных величин.
- •20.Биномиальное распределение.
- •21. Распределение пуассона.
- •22. Функция распределения
- •23. Плотность распределения
- •24. Свойства функций распределения
- •25. Числовые характеристики случайных величин
- •26. Вероятностный смысл характеристик
- •27. Равномерное и показательное распределение
- •28. Нормальное распределение Гаусса
- •29. Функции от случайных величин
- •30. Двумерная случайная величина
- •31.Закон распределения вероятностей двумерной случайной величины
- •32. Сходимость по вероятности Пусть - вероятностное пространство с определёнными на нём случайными величинами .
- •33.Предельные теоремы
- •Неравенство Чебышева
- •Теорема Чебышева
- •Теорема Бернулли
- •34.Специальные методы решения вер-х задач
- •35.Специальные распределения вероятностей
- •36.Случайный процесс
- •Определение
- •Терминология
- •Классификация
- •37. Стационарные случайные процессы.
- •38.Корреляционные функции и спектральные плотности
- •39.Действия над случайними процессами
- •40.Предмет и задачи математической статистики
- •41. Генеральная совокупность и выборка
- •42. Статистический ряд
- •43. Статистические оценки параметров распределения
- •44. Числовые характеристики статистического распределения
- •45. Точечные и интервальные оценки параметров распределения
- •46. Построение - доверительный интервал
- •47. Доверительный интервал для нормального распределения
- •48.Доверительный интервал при Распределе́ние Стью́дента
- •Определение
- •Использование t-распределения
- •49. Статическая проверка статических гипотез:понятие и виды Определения
- •50. Проверка пирсона
- •51. Критерий Колмогорова-Смирнова
- •52. Статистический анализ случайных процессов
- •54. Система массового обслуживания: определение и понятие
7.Относительная частота случайного события, ее устойчивость
Опыт показывает, что при многократном повторении испытаний частота Р*(А) случайного события обладает устойчивостью.
8. Статистическое определение вероятностей
Относительной частотой события называют отношение числа испытаний, в которых событие появилось, к общему числу практически произведенных испытаний. Таким образом, относительная частота А определяется формулой:
(2)
где m-число появлений события, n-общее число испытаний.
Сопоставляя определение вероятности и относительной частоты, заключаем: определение вероятности не требует, чтобы испытания производились в действительности; определение же относительной частоты предполагает, что испытания были произведены фактически. Другими словами, вероятность вычисляют до опыта, а относительную частоту - после опыта.
Пример 2. Из 80 случайно выбранных сотрудников 3 человека имеют серьезные нарушения сердечной деятельности. Относительная частота появления людей с больным сердцем
В качестве статической вероятности принимают относительную частоту или число, близкое к ней.
ОПРЕДЕЛЕНИЕ (статистическим определением вероятности). Число, к которому стремится устойчивая относительная частота, называется статистической вероятностью этого события.
9. Сумма и произведение событий
Суммой
двух событий
и
называется
событие
,
состоящее в выполнении события
или
события
,
или обоих вместе.
Например,
если событие
–
попадание в цель при первом выстреле,
событие
–
попадание в цель при втором выстреле,
то событие
есть
попадание в цель вообще, безразлично
при каком выстреле – при первом, при
втором или при обоих вместе.
Если события и несовместимы, то естественно, что появление этих событий вместе отпадает, и сумма событий и сводится к появлению или события , или события . Например, если событие – появление карты червонной масти при вынимании карты из колоды, событие – появление карты бубновой масти, то есть появление карты красной масти, безразлично – червонной или бубновой.
Короче, суммой двух событий и называется событие , состоящее в появлении хотя бы одного из событий и .
Суммой нескольких событий называется событие, состоящее в появлении хотя бы одного из этих событий.
Произведением двух событий и называется событие , состоящее в совместном выполнении события и события .
Например,
если событие
–
появление туза при вынимании карты из
колоды, событие
–
появление карты бубновой масти, то
событие
есть
появление бубнового туза. Если производится
два выстрела по мишени и событие
–
попадание при первом выстреле, событие
–
попадание при втором выстреле, то
есть
попадание при обоих выстрелах.
Произведением нескольких событий называется событие, состоящее в совместном появлении всех этих событий.
10. Теоремы сложения вероятностей
Суммой двух событий А и В называется событие С, состоящее в появлении хотя бы одного из событий А или В.
Теорема сложения вероятностей
Вероятность суммы двух несовместимых событий равна сумме вероятностей этих событий:
Р (А + В) = Р (А) + Р (В).
В случае, когда события А и В совместны, вер-ть их суммы выражается формулой
Р (А +В) = Р (А) + Р (В) – Р (АВ),
где АВ – произведение событий А и В.
Два события называются зависимыми, если вероятность одного из них зависит от наступления или не наступления другого. в случае зависимых событий вводится понятие условной вероятности события.
Условной вероятностью Р(А/В) события А называется вероятность события А, вычисленная при условии, что событие В произошло. Аналогично через Р(В/А) обозначается условная вероятность события В при условии, что событие А наступило.
Произведением двух событий А и В называется событие С, состоящее в совместном появлении события А и события В.