
- •1.Основные понятия комбинаторики
- •2.Предмет теории вероятности.
- •3.Случайные события и их классификация
- •4. Вероятность события
- •5.Аксиоматическое определение вероятности
- •6.Геометрические вероятности
- •7.Относительная частота случайного события, ее устойчивость
- •8. Статистическое определение вероятностей
- •9. Сумма и произведение событий
- •10. Теоремы сложения вероятностей
- •11. Теоремы умножения вероятностей
- •12. Формула полной вероятности
- •13. Формула апостериорной вероятности Байеса.
- •14. Повторение испытаний.
- •16. Теорема Лапласа
- •17. Дискретные и непрерывные случайные величины.
- •18. Понятие случайной величины
- •19. Способы задания случайных величин.
- •20.Биномиальное распределение.
- •21. Распределение пуассона.
- •22. Функция распределения
- •23. Плотность распределения
- •24. Свойства функций распределения
- •25. Числовые характеристики случайных величин
- •26. Вероятностный смысл характеристик
- •27. Равномерное и показательное распределение
- •28. Нормальное распределение Гаусса
- •29. Функции от случайных величин
- •30. Двумерная случайная величина
- •31.Закон распределения вероятностей двумерной случайной величины
- •32. Сходимость по вероятности Пусть - вероятностное пространство с определёнными на нём случайными величинами .
- •33.Предельные теоремы
- •Неравенство Чебышева
- •Теорема Чебышева
- •Теорема Бернулли
- •34.Специальные методы решения вер-х задач
- •35.Специальные распределения вероятностей
- •36.Случайный процесс
- •Определение
- •Терминология
- •Классификация
- •37. Стационарные случайные процессы.
- •38.Корреляционные функции и спектральные плотности
- •39.Действия над случайними процессами
- •40.Предмет и задачи математической статистики
- •41. Генеральная совокупность и выборка
- •42. Статистический ряд
- •43. Статистические оценки параметров распределения
- •44. Числовые характеристики статистического распределения
- •45. Точечные и интервальные оценки параметров распределения
- •46. Построение - доверительный интервал
- •47. Доверительный интервал для нормального распределения
- •48.Доверительный интервал при Распределе́ние Стью́дента
- •Определение
- •Использование t-распределения
- •49. Статическая проверка статических гипотез:понятие и виды Определения
- •50. Проверка пирсона
- •51. Критерий Колмогорова-Смирнова
- •52. Статистический анализ случайных процессов
- •54. Система массового обслуживания: определение и понятие
50. Проверка пирсона
Критерий Пирсона
Критерий
согласия
Пирсона
позволяет осуществлять проверку
эмпирического и теоретического (либо
другого эмпирического) распределений
одного признака. Данный критерий
применяется, в основном, в двух случаях:
- Для сопоставления эмпирического распределения признака с теоретическим распределением (нормальным, показательным, равномерным либо каким-то иным законом);
- Для сопоставления двух эмпирических распределений одного и того же признака.
Идея метода –
определение степени расхождения
соответствующих частот ni и
;
чем больше это расхождение, тем больше
значение
Объемы
выборок должны быть не меньше 50 и
необходимо равенство сумм частот
Нулевая гипотеза H0={два распределения практически не различаются между собой}; альтернативная гипотеза – H1={расхождение между распределениями существенно}.
Приведем схему применения критерия для сопоставления двух эмпирических распределений:
51. Критерий Колмогорова-Смирнова
Данный критерий также позволяет оценить существенность различий между двумя выборками, в том числе возможно его применение для сравнения эмпирического распределения с теоретическим.
Критерий позволяет найти точку, в которой сумма накопленных частот расхождений между двумя распределениями является наибольшей, и оценить достоверность этого расхождения. Нулевая гипотеза H0={различия между двумя распределениями недостоверны (судя по точке максимального накопленного расхождения между ними)}.
52. Статистический анализ случайных процессов
Статистический анализ случайных процессов
раздел математической статистики, посвященный методам обработки и использования статистических данных, касающихся случайных процессов (См.Случайный процесс) (т. е. функций X (t) времени t, определяемых с помощью некоторого испытания и при разных испытаниях могущих в зависимости от случая принимать различные значения). Значение x (t) случайного процесса X (t), получаемое в ходе одного испытания, называется реализацией (иначе — наблюдённым значением, выборочным значением или траекторией) процесса X (t); статистические данные о X (t), используемые при статистическом анализе этого процесса, обычно представляютсобой сведения о значениях одной или нескольких реализаций x (t) в течение определенного промежутка времени или же о значениях каких-либо величин, связанных с процессом X (t) (например, о наблюденных значениях процесса Y (t), являющегося суммой X (t) и некоторого «шума» N (t), созданного внешними помехами и ошибками измерения значений x (t)). Весьма важный с точки зрения приложений класс задач С. а. с. п. представляют собой задачи обнаружения сигнала на фоне шума, играющие большую роль при радиолокации. С математической точки зрения эти задачи сводятся к статистической проверке гипотез (См. Статистическая проверка гипотез): здесь по наблюденным значениям некоторой функции требуется заключить, справедлива ли гипотеза о том, что функция эта является реализацией суммы шума N (t) и интересующего наблюдателя сигнала X (t), или же справедлива гипотеза о том, что она является реализацией одного лишь шума N (t). В случаях, когда форма сигнала X (t) не является полностью известной, задачи обнаружения часто включают в себя и задачи статистической оценки (См. Статистические оценки) неизвестных параметров сигнала; так, например, в задачах радиолокации очень важна задача об оценке времени появления сигнала, определяющего расстояние до объекта, породившего этот сигнал. Задачи статистической оценки параметров возникают и тогда, когда по данным наблюдений за значениями процесса X (t) в течение определённого промежутка времени требуется оценить значения каких-то параметров распределения вероятностей случайных величин X (t) или же, например, оценить значение в фиксированный момент времени t = t1 самого процесса Х (t) (в предположении, что t1 лежит за пределами интервала наблюдений за этим процессом) или значение y (t1) какого-либо вспомогательного процесса Y (t), статистически связанного с Х (t) (см. Случайных процессов прогнозирование). Наконец, ряд задач С. а. с. п. Относится к числу задач на Непараметрические методы статистики; так обстоит дело, в частности, когда по наблюдениям за течением процесса X (t) требуется оценить некоторые функции, характеризующие распределения вероятностей значений этого процесса (например, плотность вероятности величиныХ (t), или корреляционную функцию Ex (t) X (s) процесса Х (t), или, в случае стационарного случайного процесса (См. Стационарный случайный процесс) X (t), его спектральную плотность f (λ)