
- •1.Основные понятия комбинаторики
- •2.Предмет теории вероятности.
- •3.Случайные события и их классификация
- •4. Вероятность события
- •5.Аксиоматическое определение вероятности
- •6.Геометрические вероятности
- •7.Относительная частота случайного события, ее устойчивость
- •8. Статистическое определение вероятностей
- •9. Сумма и произведение событий
- •10. Теоремы сложения вероятностей
- •11. Теоремы умножения вероятностей
- •12. Формула полной вероятности
- •13. Формула апостериорной вероятности Байеса.
- •14. Повторение испытаний.
- •16. Теорема Лапласа
- •17. Дискретные и непрерывные случайные величины.
- •18. Понятие случайной величины
- •19. Способы задания случайных величин.
- •20.Биномиальное распределение.
- •21. Распределение пуассона.
- •22. Функция распределения
- •23. Плотность распределения
- •24. Свойства функций распределения
- •25. Числовые характеристики случайных величин
- •26. Вероятностный смысл характеристик
- •27. Равномерное и показательное распределение
- •28. Нормальное распределение Гаусса
- •29. Функции от случайных величин
- •30. Двумерная случайная величина
- •31.Закон распределения вероятностей двумерной случайной величины
- •32. Сходимость по вероятности Пусть - вероятностное пространство с определёнными на нём случайными величинами .
- •33.Предельные теоремы
- •Неравенство Чебышева
- •Теорема Чебышева
- •Теорема Бернулли
- •34.Специальные методы решения вер-х задач
- •35.Специальные распределения вероятностей
- •36.Случайный процесс
- •Определение
- •Терминология
- •Классификация
- •37. Стационарные случайные процессы.
- •38.Корреляционные функции и спектральные плотности
- •39.Действия над случайними процессами
- •40.Предмет и задачи математической статистики
- •41. Генеральная совокупность и выборка
- •42. Статистический ряд
- •43. Статистические оценки параметров распределения
- •44. Числовые характеристики статистического распределения
- •45. Точечные и интервальные оценки параметров распределения
- •46. Построение - доверительный интервал
- •47. Доверительный интервал для нормального распределения
- •48.Доверительный интервал при Распределе́ние Стью́дента
- •Определение
- •Использование t-распределения
- •49. Статическая проверка статических гипотез:понятие и виды Определения
- •50. Проверка пирсона
- •51. Критерий Колмогорова-Смирнова
- •52. Статистический анализ случайных процессов
- •54. Система массового обслуживания: определение и понятие
44. Числовые характеристики статистического распределения
В главе 5 мы ввели в рассмотрение различные числовые характеристики случайных величин: математическое ожидание, дисперсию, начальные и центральные моменты различных порядков. Эти числовые характеристики играют большую роль в теории вероятностей. Аналогичные числовые характеристики существуют и для статистических распределений. Каждой числовой характеристике случайной величины соответствует ее статистическая аналогия. Для основной характеристики положения — математического ожидания случайной величины – такой является среднее арифметическое наблюденных значений случайной величины:
,
(7.4.1)
где
—
случайной величины, наблюденное
-м
опыте,
-
число опытов.
Эту характеристику мы будем в дальнейшем называть статистическим средним случайной величины.
Согласно закону больших чисел, при ограниченном увеличении числа опытов статистическое среднее приближается (сходится по вероятности) к математическому ожиданию. При ограниченном числе опытов статистическое среднее является случайной величиной, которая, тем не менее, связана с математическим ожиданием и может дать о нем известное представление.
Подобные статистические аналогии существуют для всех числовых характеристик. Условимся в дальнейшем эти статистические аналогии обозначать теми же буквами, что и соответствующие числовые характеристики, но и снабжать их значком *.
45. Точечные и интервальные оценки параметров распределения
Важной задачей математической статистики является задача оценивания (приближенного определения) по выборочным данным параметров закона распределения признака X генеральной совокупности. Другими словами, необходимо по данным выборочного распределения оценить неизвестные параметры теоретического распределения. Статистические оценки могут быть точечными и интервальными.
Задачу статистического оценивания, а также основные виды статистических оценок, рассмотрим для частного случая: пусть признак X генеральной совокупности распределен нормально, то есть теоретическое распределение имеет вид:
с
параметрами:
–
математическое ожидание признака X ;
–
среднеквадратическое отклонение
признака X.
Точечной оценкой неизвестного параметра называют число (точку на числовой оси), которое приблизительно равно оцениваемому параметру и может заменить его с достаточной степенью точности в статистических расчетах.
Точечной
оценкой генеральной средней
и
параметра a может служить выборочная
средняя
.
Точечными
оценками генеральной дисперсии
могут
служить выборочная дисперсия
,
или, при малых объемах выборки n ,
исправленная выборочная дисперсия:
.
Точечными
оценками для генерального
среднеквадратического отклонения
могут
служить:
–
выборочное среднее квадратическое
отклонение или
–
исправленное выборочное среднее
квадратическое отклонение.
Формулы, необходимые для вычисления выборочной средней и выборочной дисперсии , приведены в п. 2.
Для того чтобы точечные статистические оценки обеспечивали “хорошие” приближения неизвестных параметров, они должны быть несмещенными, состоятельными и эффективными.
Для
построения интервальной оценки рассмотрим
событие, заключающееся в том, что
отклонение точечной оценки параметра
от
истинного значения этого параметра q
по абсолютной величине не превышает
некоторую положительную величину D .
Вероятность такого события
.
Заменив неравенство
на
равносильное, получим:
.
Вероятность
того, что доверительный интервал
заключает
в себе (покрывает) неизвестный параметр
q равна g и называется доверительной
вероятностью или надежностью интервальной
оценки. Величину D называют точностью
оценки.