
- •1.Основные понятия комбинаторики
- •2.Предмет теории вероятности.
- •3.Случайные события и их классификация
- •4. Вероятность события
- •5.Аксиоматическое определение вероятности
- •6.Геометрические вероятности
- •7.Относительная частота случайного события, ее устойчивость
- •8. Статистическое определение вероятностей
- •9. Сумма и произведение событий
- •10. Теоремы сложения вероятностей
- •11. Теоремы умножения вероятностей
- •12. Формула полной вероятности
- •13. Формула апостериорной вероятности Байеса.
- •14. Повторение испытаний.
- •16. Теорема Лапласа
- •17. Дискретные и непрерывные случайные величины.
- •18. Понятие случайной величины
- •19. Способы задания случайных величин.
- •20.Биномиальное распределение.
- •21. Распределение пуассона.
- •22. Функция распределения
- •23. Плотность распределения
- •24. Свойства функций распределения
- •25. Числовые характеристики случайных величин
- •26. Вероятностный смысл характеристик
- •27. Равномерное и показательное распределение
- •28. Нормальное распределение Гаусса
- •29. Функции от случайных величин
- •30. Двумерная случайная величина
- •31.Закон распределения вероятностей двумерной случайной величины
- •32. Сходимость по вероятности Пусть - вероятностное пространство с определёнными на нём случайными величинами .
- •33.Предельные теоремы
- •Неравенство Чебышева
- •Теорема Чебышева
- •Теорема Бернулли
- •34.Специальные методы решения вер-х задач
- •35.Специальные распределения вероятностей
- •36.Случайный процесс
- •Определение
- •Терминология
- •Классификация
- •37. Стационарные случайные процессы.
- •38.Корреляционные функции и спектральные плотности
- •39.Действия над случайними процессами
- •40.Предмет и задачи математической статистики
- •41. Генеральная совокупность и выборка
- •42. Статистический ряд
- •43. Статистические оценки параметров распределения
- •44. Числовые характеристики статистического распределения
- •45. Точечные и интервальные оценки параметров распределения
- •46. Построение - доверительный интервал
- •47. Доверительный интервал для нормального распределения
- •48.Доверительный интервал при Распределе́ние Стью́дента
- •Определение
- •Использование t-распределения
- •49. Статическая проверка статических гипотез:понятие и виды Определения
- •50. Проверка пирсона
- •51. Критерий Колмогорова-Смирнова
- •52. Статистический анализ случайных процессов
- •54. Система массового обслуживания: определение и понятие
39.Действия над случайними процессами
40.Предмет и задачи математической статистики
Математическая статистика – это наука, занимающаяся методами обработки экспериментальных данных. Любая наука решает в порядке возрастания сложности и важности следующие задачи:1) описание явления;2) анализ и прогноз;3) поиск оптимального решения. иТакого рода задачи решает и математическая статистика: 1) систематизировать полученный статистический материал; 2) на основании полученных экспериментальных данных оценить интересующие нас числовые характеристики наблюдаемой случайной величины; 3) определить число опытов, достаточное для получения достоверных результатов при минимальных ошибках измерения. Одной из задач третьего типа является задача проверки правдоподобия гипотез. Она может быть сформулирована следующим образом: имеется совокупность опытных данных, относящихся к одной или нескольким случайным величинам. Необходимо определить, противоречат ли эти данные той или иной гипотезе, например, гипотезе о том, что исследуемая случайная величина распределена по определенному закону, или две случайные величины некоррелированы (т.е. не связаны между собой) и т.д. В результате проверки правдоподобия гипотезы она либо отбрасывается, как противоречащая опытным данным, либо принимается, как приемлемая. Таким образом, математическая статистика помогает экспериментатору лучше разобраться в полученных опытных данных, оценить, значимы или нет определенные наблюденные факты, принять или отбросить те или иные гипотезы о природе рассматриваемого явления.
41. Генеральная совокупность и выборка
Понятия генеральной совокупности и выборки из нее являются основополагающими в статистике. Строгие определения заимствованы из теории вероятностей, хотя терминология этих двух наук различается. Вместо случайной величины в теории вероятностей, в математической статистике вводится понятие о генеральной совокупности. Под генеральной совокупностьюпонимают множество всех возможных значений случайной величины [3, 4, 9].
Вместо эксперимента
(испытания, опыта), в результате которого
случайная величина
приняла
значение
(в
теории вероятностей), в математической
статистике вводится понятие о случайном
выборе из генеральной совокупности
значения
.
Уместная в теории вероятностей фраза
«в результате
независимых
испытаний случайная величина
приняла
значения
»
преобразуется: «случайная
выборка
объема
извлечена
из генеральной совокупности
».
Рассмотрим определения понятия «выборка», даваемые в [3, 4, 5].
Выборка – множество независимых, одинаково распределенных случайных величин.
Выборка – множество числовых значений, которые приняла исследуемая случайная величина в повторных независимых испытаниях (при этом отдельные числовые значения случайной величины в каждом испытании называются реализациями данной случайной величины, а сами испытания проводятся в неизменных условиях).
Эти два определения
эквивалентны. Действительно, при
рассмотрении задачи – вычисление
среднего значения случайной
величины Х (числа
очков на грани игральной кости) – можно
построить опыт двумя способами:
подбрасывать один кубик много раз
(
раз)
и вычислить среднее арифметическое по
этим n реализациям
(второе определение), или можно
взять n одинаковых
кубиков, подбросить их один раз,
обеспечивая одинаковые условия испытаний
(первое определение). Очевидно, значения
средних арифметических, вычисленных
по результатам обоих опытов, будут
различны, поскольку среднее арифметическое
как функция от реализаций случайной
величины само является случайной
величиной. А математическое ожидание
как среднее по всей генеральной
совокупности будет одинаковым и равным
.
Выборку можно понимать и как совокупность случайно отобранных объектов. В этом случае генеральная совокупность – совокупность объектов, из которых производится выборка. Приводя данное определение, необходимо упомянуть о повторных и бесповторных выборках. Повторная выборка производится таким образом, что отобранный объект возвращается в генеральную совокупность перед отбором следующего. При бесповторной выборке отобранные объекты не возвращаются в генеральную совокупность.