Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 12 ТОРМОЗНЫЕ УСТРОЙСТВА170-202.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.1 Mб
Скачать

12.7. Гидродинамический тормоз буровой лебедки

Гидродинамические тормоза буровых лебедок, используемые для ограничения скорости спуска бурильных и обсадных труб в скважину, представляют собой лопаточное гидравлическое устройство, состоящее из вращающегося ротора и неподвижного статора, рабочая полость которых заполнена жидкостью. Гидродинамический тормоз действует подобно /гидромуфте в тормозном режиме, при котором турбинное колесо заклинивается и скольжение становится равным 100%. При вращении радиальные лопатки ротора отбрасывают жидкость от центра к периферии и направляют ее на лопатки статора. Пройдя по межлопаточным каналам статора, жидкость вновь попадает на лопатки ротора и, таким образом, устанавливается замкнутая циркуляция жидкости между ротором и статором.

Силы гидравлических сопротивлений, обусловленные трением жидкости в межлопаточных каналах и потерей напора на удары в вихревых зонах между лопатками ротора и статора, создают тормозной момент, противодействующий вращению ротора. Величина тормозного момента зависит от диаметра и частоты вращения ротора и регулируется уровнем наполнения гидродинамического тормоза рабочей жидкостью. Механические потери, вызываемые трением в опорах и уплотнениях вала ротора, не влияют существенно на величину тормозного момента. Механическая энергия, поглощаемая в процессе торможения, превращается в тепловую и вызывает нагрев рабочей жидкости и деталей гидродинамического тормоза.

Допустимая температура нагрева зависит от физических свойств рабочей жидкости. При использовании воды температура нагрева не должна превышать 90 °С, так как при температуре, более близкой к точке кипения, возникает угроза кавитации. Для охлаждения рабочей жидкости используется холодильник, который одновременно служит для регулирования уровня наполнения тормоза жидкостью.

Ротор гидродинамического тормоза (рис.12.7) состоит из вала 8 и отлитого из чугуна двухлопастного насосного колеса 5 с радиальными плоскими лопатками, наклоненными под углом 45° в сторону их рабочего вращения, совпадающего с направлением вращения барабана лебедки при спуске. Толщина лопаток определяется из требований литейного производства и в зависимости от диаметра ротора составляет 12—25 мм. Число лопаток принимается равным 20—28. Дальнейшее увеличение числа лопаток существенно не влияет на величину тормозного момента и приводит к неоправданному увеличению массы гидродинамического тормоза.

Для предохранения от проворачивания под действием крутящих моментов, передаваемых ротором, насосное колесо соединяется с валом ротора прессовой посадкой и шпонкой.

Статор 6 состоит из двух симметричных частей, образующих корпус гидродинамического тормоза со стойками 1 для крепления к раме буровой лебедки. Обе части статора отливают из чугуна. Они имеют радиальные лопатки, наклоненные в сторону, противоположную наклону лопаток насосного колеса. Вал 8 на роликоподшипниках 3, 9 и фланцевых стаканах 4 и 7 устанавливается в сквозных расточках статоров. Соосность отверстий обеспечивается центрирующим буртиком в соединении статоров. Стыкуемые плоскости статоров уплотняются паронитовой либо картонной прокладкой 13, затягиваемой крепежными болтами 12.

В рассматриваемой конструкции вал ротора устанавливается на роликовом радиальном и радиально-сферическом двухрядном подшипниках в отличие от более распространенных конструкций, в которых оба подшипника роликовые радиальные. Осевое положение вала фиксируется радиально-сферическим подшипником, наружное кольцо которого затягивается торцовой крышкой с регулировочной прокладкой, а внутреннее — закрепительной втулкой 2. Свобода противоположного конца вала обеспечивается перемещением роликов по беговой дорожке внутренней обоймы подшипника.

Осевые зазоры между ротором и статором составляют 4— 4,5 мм и регулируются набором металлических прокладок, установленных между фланцевыми стаканами и наружными торцами отверстий статоров. Подшипники вала смазываются консистентной смазкой, набиваемой ручным шприцем через масленки. Для предупреждения утечек масла фланцевые стаканы и крышка снабжены щелевыми (жировыми) канавками. Выводной конец вала используется для сцепной муфты, соединяющей гидродинамический тормоз с подъемным валом буровой лебедки. Для уплотнения вращающегося вала применяются сальниковые и торцовые уплотнения.

Сальниковые уплотнения благодаря простоте и дешевизне более широко распространены и состоят из плетеной асбестопроволочной набивки В, промежуточной распорной втулки, грундбуксы и нажимных болтов с контргайками. Износ сальникового уплотнения контролируется по утечке рабочей жидкости через каналы 10. При чрезмерной утечке сальники равномерно подтягиваются нажимными болтами. Нельзя допускать перетяжки сальника, так как это приводит к перегреву и преждевременному выходу сальника из строя.

Для повышения долговечности сальники вала ротора регулярно смазываются графитовой смазкой, подаваемой через масленки. Смазка снижает коэффициент трения, и в результате этого уменьшаются нагрев и износ сальника. Сальниковую набивку осматривают и заменяют после снятия фланцевых стаканов. Для ускорения этих операций используются два болта, вставляемые в резьбовые отверстия фланца стакана. При ввинчивании болтов фланцевый стакан вместе с подшипником и крышкой снимают с вала ротора. Известны конструкции гидродинамических тормозов, в которых подшипники вала установлены на выносных опорах. Вследствие этого улучшается доступ для осмотра и замены сальниковых набивок, а подшипники вала полностью изолируются от рабочей жидкости. Недостаток этих конструкций — увеличение длины вала, требующее для установки тормоза соответствующего удлинения рамы лебедки.

В качестве рабочей жидкости обычно используют воду, поступающую из холодильника через патрубки 11 в кольцевые камеры статора. По радиальным и тангенциальным каналам А в теле и лопатках статоров вода направляется в межлопаточные полости Б тормоза. Тангенциально направленный поток способствует самовсасыванию, и поэтому поступающая из холодильника вода интенсивно перемешивается с горячей водой в полости тормоза, нагреваемой в результате торможения. Для увеличения проточных сечений тормоза часть лопаток ротора укорочена.

Из гидротормоза вода отводится в холодильник через верхний патрубок. Необходимый для этого напор создается углублениями на наружной цилиндрической поверхности ротора либо сужением радиального зазора между ротором и статором у верхнего патрубка, что достигается смещением фланцевых стаканов подшипников ротора относительно оси статора (эксцентриситет равен 6 мм).

После охлаждения жидкость самотеком переливается из холодильника в гидротормоз. Создаваемый тормозной момент зависит от уровня воды в холодильнике, устанавливаемого с помощью ступенчатых и бесступенчатых регуляторов.

Н а рис. 12.8 показан ступенчатый регулятор уровня, который состоит из вертикальной трубы 8, установленной в холодильнике 1. По высоте трубы 8 смонтированы шесть переливных клапанов 7, управляемых рукоятками 9. При повороте рукоятки эксцентрик с прорезью выдвигает шток 10 и открывает клапан сливного отверстия, на уровне которого холодильник и сообщающийся с ним тормоз заполняются водой. Для предотвращения опорожнения холодильника в случае прекращения подачи воды вентиль 6 водопровода устанавливается на высоте 600 мм от дна холодильника.

Нагретая вода поступает в холодильник через патрубок 2 и по патрубку 3 направляется в тормоз. Вода, поступающая в холодильник сверх установленного уровня, сливается через патрубок 4 на трубе 8. Кран 5 используется для слива воды.

Уровень жидкости в холодильнике и тормозе J регулируется углом наклона трубы, поворачиваемой рычагом 5. Вода, поступающая в холодильник сверх установленного уровня, через верхний торец поворотной трубы 3 и трубу 4 сливается в приемную емкость.

Бесступенчатый регулятор уровня жидкости (рис. 12.9) Волгоградского завода буровой техники имеет поворотную трубу 3, установленную в холодильнике 2. тормоза.

В бесступенчатых регуляторах завода им. лейт. Шмидта используется поворотная труба складывающейся конструкции, позволяющая уменьшить габариты холодильника. В зарубежных гидродинамических тормозах уровень жидкости регулируется встроенным в холодильник сливным дроссельным клапаном [43].

Г идродинамический тормоз используется при спуске бурильных труб, когда вес колонны превышает 100—200 кН. При подъеме труб и спуске незагруженного элеватора гидродинамический тормоз необходимо отключать, так как действие его является отрицательным. При подъемных операциях работа гидродинамического тормоза вызывает излишние затраты мощности и износ уплотнений и подшипников вала ротора, что сокращает срок службы тормоза. При спуске незагруженного элеватора скорость спуска уменьшается и в результате этого возрастает общая продолжительность спуско-подъемных операций.

Для сокращения времени, затрачиваемого на частые включения и отключения, подъемный вал лебедки соединяется с валом гидродинамического тормоза посредством сцепных муфт. Наиболее эффективна фрикционная муфта, позволяющая оперативно соединять тормоз с лебедкой при спусках бурильных свечей.

Техническая характеристика гидродинамических тормозов [1, 43]

Тип тормоза …………….

Активный диаметр ротора, мм

УТГ-1000

УТГ-1450

ТГ-1-1200

ШТГ-1-1200

1000

1450

1200

1200

Число роторов ………….

2

1

1

1

Максимальная частота вращения ротора, об/мин

500

400

400

400

Тормозной момент, к м:

при 250 об/мин

20

110

45

45

максимально допустимый

50

170

50

50

Масса тормоза, кг

3306

5200

3600

2730

Габариты тормоза, мм:

высота ……………..

1590

1870

1750

1810

ширина ……………

1680

1610

1575

длина ……………...

1435

1533

1090

1138

Регулирование наполнением

Ступенчатое

Бесступенчатое

Полезный объем регулятора

уровня воды, м3

0,4

0,8

0,52

0,5

Масса регулятора, кг

245

426

328

215

Габариты регулятора, мм

высота …………….

1950

2466

1925

1750

ширина ……………

478

1094

950

910

длина ………………

1062

1400

1075

Примечание: УТГ — гидродинамический тормоз УЗТМ; ТГ — гидродинамический тормоз ВЗБТ; ШТГ — гидродинамический тормоз завода мм. лейт. Шмидта.