
- •Генетика – наука изучающая наследственность, изменчивость, молекулы днк. Разделы генетики. Методы генетики. Генетика – наука изучающая наследственность, изменчивость, молекулы днк.
- •Разделы генетики. Методы генетики.
- •Вопрос 2. Этапы развития генетики.
- •Вопрос 3. Генетический аппарат клетки человека.
- •Вопрос 4. Уровни организации генетического материала
- •Вопрос 5. Характеристика генома человека.
- •Элементы ядерного генома
- •Динамика ядерного генетического материала
- •Вопрос 6: Компактизация генетического материала.
- •Вопрос 7. Количество, активность и изменение генетического материала.
- •Активность генетического материала
- •Характеристика генов в зависимости от периода и места экспрессии
- •Изменение генетического материала
- •8. Хромосомы человека. Молекулярная организация хромосом.
- •9. Общая характеристика хромосом
- •10. Морфология метафазных хромосом.
- •Вопрос №11. Классификация хромосом человека. Денверская (1960) и Парижская (1970). Центромерный индекс.
- •Изучение метафазных хромосом
- •Этапы кариотипирования Дифференциальная окраска хромосом
- •Символы, используемые для описания кариотипа
- •Вопрос №15. Вариации кариотипа в пределах нормального фенотипа (хромосомный полиморфизм, половой хроматин, инактивация хромосомы х)
- •Хромосомный полиморфизм
- •Половой хроматин
- •Молекулярные механизмы инактивации х-хромосомы
- •Вопрос 17. Половой хроматин х. Анализ полового хроматина х в клетках слизистой полости рта, в мазках периферической крови, тест Барра.
- •Анализ полового хроматина X в клетках слизистой полости рта
- •Интерпретация теста Барра
- •Анализ полового хроматина X в мазках периферической крови
- •Вопрос 18. Тест Барра. Практическое значение теста.
- •1. Показания:
- •2. Ограничения:
- •Вопрос 19. Репликация днк (полуконсервативный механизм)
- •3. Основные ферменты репликации днк
- •Вопрос 20. Характеристика периодов клеточного цикла. Биологическая роль митоза
- •Вопрос 21. Ошибки митоза и их последствия
- •Патология митоза, связанная с повреждением митотического аппарата
- •Вопрос 22. Гаметогенез. Этапы.
- •Этапы гаметогенеза
- •23. Оплодотворение. Геномная рекомбинация. Динамика хромосом в мейозе
- •Процесс рекомбинации
- •Вопрос 24. Ошибки мейоза и их последствия
- •Вопрос 25. Строение, локализация генов человека
- •Вопрос 26. Свойства и функции генов человека
- •Свойства гена
- •Вопрос 27. Классификация генов человека. Группы сцепления (Томас Морган, 1911)
- •Закон сцепленного наследования
- •Вопрос 28. Генетические карты.
- •Вопрос 29. Методы анализа генов. Секвенирование днк
- •Секвенирование по Сэнгеру
- •Вопрос 30. Методы анализа генов. Метод Саузерн-блотт. Метод Нозерн-блотт
- •Вопрос 31. Методы анализа генов. Метод Вестерн-блотт. Техника пцр в анализе генов
- •Подготовка образца
- •Гель-электрофорез
- •Перенос на мембрану
- •Блокирование
- •Детекция
- •Проведение пцр
- •Компоненты реакции
- •Праймеры
- •Криминалистика
- •Установление отцовства
- •Медицинская диагностика
- •Вопрос 32. Методы анализа генов. Гибридизация in situ. Метод fish
- •Вопрос 33. Понятие генотип, фенотип, наследственные признаки. Характеристика аллельных и неалелльных генов
- •Вопрос 34. Моногенные менделирующие признаки (явление полиморфизма, полное, неполное доминирование, кодоминирование, эпистаз, комплементарность, эффект положения, пенетрантность, экспрессивность)
- •Хромосомный полиморфизм
- •Полное доминирование
- •Неполное доминирование
- •Кодоминирование
- •Локальное (внутримолекулярное) доминирование Относительный характер доминирования
- •Вопрос 35. Нормальные наследственные моногенные признаки. Группы крови (аво, Rh, mnSs, Xg). Секреторные группы
- •Система ab0
- •Система Rh (резус-система)
- •Ткани внутренней секреции
- •Вопрос 36. Нормальные наследственные моногенные признаки. Группы сыворотки крови и группы ферментов. Тканевые группы. Вкусовая чувствительность
- •Вопрос 37. Моногенные болезни. Типы наследования (аутосомно-доминантный, аутосомно-рецессивный, доминантно-рецессивный, сцепленный с половыми хромосомами)
- •Вопрос 38. Моногенные болезни. Энзимопатии. Пример Первичные энзимопатии
- •Вторичные энзимопатии
- •Энзимопатии углеводнго обмена
- •Энзимопатии липидного обмена
- •Энзимопатии обмена аминокислот
- •Вопрос 39. Моногенные болезни. Гемоглобинопатии. Пример
- •Вопрос 40. Наследование моногенных неменделирующих признаков
Вопрос 29. Методы анализа генов. Секвенирование днк
Секвенирование (sequencing) – это общее название методов, которые позволяют установить последовательность нуклеотидов в молекуле ДНК. В настоящее время нет ни одного метода секвенирования, который бы работал для молекулы ДНК целиком; все они устроены так: сначала готовится большое число небольших участков ДНК (клонируется молекула ДНК многократно и «разрезается» её в случайных местах), а потом читается каждый участок по отдельности. Клонирование происходит либо просто выращиванием клеток в чашке Петри, либо при помощи так называемой полимеразной цепной реакции. В кратком и неточном изложении работает она примерно так: сначала ДНК денатурируют, т.е. разрушают водородные связи, получая отдельные нити. Затем к ДНК присоединяют так называемые праймеры; это короткие участки ДНК, к которым может присоединиться ДНК-полимераза – соединение, которое, собственно, и занимается копированием (репликацией) нити ДНК. На следующем этапе полимераза копирует ДНК, после чего процесс можно повторять: после новой денатурации отдельных нитей будет уже вдвое больше, на третьем цикле – вчетверо, и так далее. Все эти эффекты достигаются в основном с помощью изменений температуры смеси из ДНК, праймеров и полимеразы; на выходе получается большое число копий участков одной и той же ДНК.
Секвенирование по Сэнгеру
При секвенировании по Сенгеру происходит гибридизация синтетического олигонуклеотида . Этот олигонуклеотид является праймером, поставляющим 3'-гидроксильную группу для инициации синтеза цепи, комплементарной матрице.
Раствор с праймером распределяют по четырем пробиркам, в каждой из которых находятся четыре дезоксинуклеотида, . Дидезоксинуклеотид включается по всем позициям в смеси растущих цепей, и после его присоединения рост цепи сразу останавливается.
В результате этого в каждой из четырех пробирок при участии ДНК-полимеразы образуется уникальный набор олигонуклеотидов разной длины, включающих праймерную последовательность. Далее в пробирки добавляют формамид для расхождения цепей и проводят электрофорез в полиакриламидном геле на четырёх дорожках.
Первым методом секвенирования, который учёные сумели применить для обработки целых геномов, стало секвенирование по Сэнгеру. Смысл таков: участок ДНК клонируется, после чего полученная смесь делится на четыре части. Каждая часть помещается в активную среду, где присутствуют: (1) ДНК-полимераза, которая, как мы уже выяснили, занимается репликацией, (2) праймеры, необходимые для начала процесса репликации, (3) смесь всех четырёх нуклеотидов, которые будут служить «кирпичиками» для строительства новых копий ДНК, (4) и, главное, специальные вариации одного из нуклеотидов (ровно один вид нуклеотидов для каждой части), которые прекращают дальнейшее копирование молекулы ДНК. Современные секвенаторы – это так называемые секвенаторы второго поколения (SGS, second generation sequencing). В них участки ДНК по-прежнему многократно клонируются, но процесс чтения устроен не так, как у Сэнгера.
Метод Эдмана /Суть метода заключается в обработке исследуемого пептида определенным набором реагентов, что приводит к отщеплению одной аминокислоты с N-конца последовательности. Циклическое повторение реакции и анализ продуктов реакций дают информацию о последовательности аминокислот в пептиде.