- •Электрический заряд. Закон кулона.
- •2.Напряженность поля. Потенциал.
- •3.Энергия взаимодействия системы зарядов
- •4. Связь между напряженностью электрического поля и потенциалом
- •5. Диполь. Поле диполя.
- •6. Диполь во внешнем электрическом поле
- •7. Градиент.Дивергенция.Ротор.
- •8. Теорема гаусса для напряженности электростатического поля. Циркуляция и ротор электростатического поля
- •9. Вычисление полей с помощью теоремы гаусса
- •10. Уравнения пуассона и лапласа
- •11.Электрическое поле в диэлектриках. Объемные и поверхностные связанные заряды.
- •12. Вектор электрического смещения
- •14.Проводники в эл поле
- •16. Энергия заряженного проводника. Энергия электрического поля.
- •17.Электрический ток. Уравнение непрерывности.
- •20. Магнитное поле движущегося заряда. Закон Био - Савара.
- •22. Поля соленоида, тороида, прямолинейного тока
- •24. Контур с током в магнитном поле
- •25. Намагничение магнетика
- •29.Вихревое электрическое поле
- •30.Ток смещения
- •31.Уравнение максвелла
- •32.Волновое уравнение для электромагнитного поля
- •33. Плоская электромагнитная волна
- •34. Энергия и импульс электромагнитной волны.
- •35. Интерференция световых волн
- •36. Интерференция света при отражении от тонких плёнок
- •37. Многолучевая интерференция
- •38. Дифракция. Дифракция Френеля.
- •39. Дифракция Фраунгофера. Дифракция на щели
- •40. Дифракционная решетка
- •41. Естественный и поляризованный свет
- •42. Поляризация при отражении и преломлении. Поляризация при 2-ом лучепреломлении
40. Дифракционная решетка
Д
ифракционная
решетка представляет собой совокупность
большого числа N
одинаковых по ширине и параллельных
друг другу щелей, разделенных непрозрачными
промежутками, также одинаковыми по
ширине:
b - ширина щели;
а - ширина непрозрачного участка;
d = a + b - период решетки.
Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т.е. в дифракционной решетке осуществляется многолучевая интерференция. Т.к. щели находятся друг от друга на одинаковых расстояниях, то разности хода лучей, идущих от двух соседних щелей, будут для данного направления φ одинаковы в пределах всей дифракционной решетки.
(1)
В направлениях, в которых наблюдается минимум для одной щели, будут минимумы и в случае N щелей, т.е. условие главных минимумов дифракционной решетки будет аналогично условию минимумов для щели:
40. (2)
- условие главных минимумов.
Условие максимумов; те случаи φ, которые удовлетворяют максимумам для одной щели, могут быть либо максимумами, либо минимумами, т.к. всё зависит от разности хода между лучами. Условие главных максимумов:
(3)
Эти максимумы будут расположены симметрично относительно центрального (нулевого k = 0) максимума.
Для тех углов φ, для которых одновременно выполняется (2) и (3) максимума не будет, а будет минимум (например, при d =2b для всех четных k =2р, р = 1, 2, 3...). Между главными максимумами имеются дополнительные очень слабые максимумы, интенсивность которых во много раз меньше интенсивности главных максимумов (1/22 интенсивности ближайшего главного максимума). Дополнительных максимумов будет N - 2, где N - число штрихов.
Условие дополнительных максимумов:
Между главными максимума будут располагаться (N-1) дополнительных минимумов.
Условие дополнительных минимумов:
Таким образом, дифракционная картина, при дифракции на дифракционной решетке зависит от N и от отношения d/b.
Пусть N =5,d/b =4. Тогда число главных максимумов(sin φ =1) kmax < d/λ . Между ними по N -2 = 3 дополнительных максимума и N – 1 = 4 дополнительных минимума. При k/m = d/b =2,4,8... - главных максимумов не будет, а будут главные минимумы.
41. Естественный и поляризованный свет
В естественном свете колебания различных направлений быстро и беспорядочно сменяют друг друга. Свет, в котором направления колебаний светового вектора каким-то образом упорядочены, называется поляризованным. Так, если в результате каких-либо внешних воздействий появляется преимущественное (но не исключительное!) направление колебаний вектора напряженности электрического поля (рис. 272, б), то имеем дело с частично поляризованным светом. Свет, в котором вектор напряженности электрического поля (и, следовательно, напряженности магнитного поля) колеблется только в одном направлении, перпендикулярном лучу (рис. 272, в), называется плоско поляризованным (линейно поляризованным).
Плоскость, проходящая через направление колебаний светового вектора плоско поляризованной волны и направление распространения этой волны, называется плоскостью поляризации. Плоско поляризованный свет является предельным случаем эллиптически поляризованного света — света, для которого вектор напряженности электрического поля изменяется со временем так, что его конец описывает эллипс, лежащий в плоскости, перпендикулярной лучу. Если 41. эллипс поляризации вырождается в прямую (при разности фаз j, равной нулю или p), то имеем дело с рассмотренным выше плоско поляризованным светом, если в окружность (при j = ±p/2 и равенстве амплитуд складываемых волн), то имеем дело с циркулярно поляризованным (поляризованным по кругу) светом.
Степенью поляризации называется величина
где Imax, и Imin — соответственно максимальная и минимальная интенсивности частично поляризованного света, пропускаемого анализатором. Для естественного света Imax=Imin и Р=0, для плоско поляризованного Imin =0 и Р=1.
Естественный свет можно преобразовать в плоско поляризованный, используя так называемые поляризаторы, пропускающие колебания только определенного направления (например, пропускающие колебания, параллельные главной плоскости поляризатора, и полностью задерживающие колебания, перпендикулярные этой плоскости). В качестве поляризаторов могут быть использованы среды, анизотропные в отношении колебаний вектора напряженности электрического поля, например кристаллы (их анизотропия известна). Из природных кристаллов, давно используемых в качестве поляризатора, следует отметить турмалин.
