
- •2.Вакуумирование жидкой стали в ковше: способы и применяемое оборудование, влияние вакуумирования на качество готового металла.
- •4.Устройство кислородных фурм для конвертеров с верхней и донной подачей дутья.
- •6′ Кислородные (а—г) и сульфидные (д, е) неметаллические включения в Деформированной стали:
- •7. Газы в стали. Факторы, оказывающие влияние на остаточное содержание газов в стали.
- •8. Опишите механизм шлакообразования при производстве стали. Какие факторы оказывают влияние на скорость наведения шлака?
- •10.Дайте характеристику материальных потерь при продувке стали в кислородном конвертере.
- •11.Взаимодействие кислородной струи с ванной жидкого металла в конвертере.
- •15.Конструкция футеровки кислородного конвертера. Факторы, влияющие на ее стойкость. Способы увеличения срока службы футеровки.
- •17.Удаление серы при производстве стали, факторы, влияющие на остаточное содержание серы.
- •18.Опишите структуру теплового баланса конвертерной плавки
- •19.Удаление фосфора при производстве стали, факторы, влияющие на остаточное содержание фосфора
- •21.Дайте краткую характеристику глубинного (осаждающего) раскисления стали.
- •22.Применение нейтральных газов для обработки жидкой стали в ковше
- •24.Что такое вакуум-кислородное обезуглероживание? Для чего применяется
- •25.Опишите источники образования неметаллических включений в стали и способы их удаления в технологии внепечной металлургии
- •Неметаллические включения в стали
- •26.Кристаллизация стали и сопутствующие ей явления.
- •27.Типы машин непрерывного литья заготовок
- •Основные типы мнлз
- •28.Общая характеристика кислородно-конвертерного процесса с донной подачей дутья
- •29.Явление ликвации и его влияние на характеристики качества стального слитка
- •Ликвационные явления в стальном слитке
- •30.Опишите виды установок для вакуумной обработки стали. Укажите технологические особенности использования этих установок.
- •31.Усадочные явления при затвердевании жидкой стали и их влияние на характеристики качества стального слитка.
- •Усадочные явления в процессе затвердевания и охлаждения слитка
- •32.Общее устройство мартеновской печи
- •36.Способы раскисления стали и их влияние на качество стали.
8. Опишите механизм шлакообразования при производстве стали. Какие факторы оказывают влияние на скорость наведения шлака?
Шлакообразование и требования к шлаку Параметры шлакового режима — состав, вязкость, количество шлака и скорость его формирования оказывают сильное влияние на результаты плавки. Требования к шлаку. Шлаковый режим должен обеспечить достаточно полное удаление фосфора и серы из металла во время продувки. С этой целью основность шлака должна быть достаточно высокой (от 2,5 до 3,7), а вязкость невелика, так как в густых шлаках замедляются процессы диффузии компонентов, участвующих в реакциях дефосфорации и десульфурации. Скорость формирования шлака. В связи с кратковременностью продувки чрезвычайно важно обеспечить как можно более раннее формирование шлака. В кислородно-конвертерном процессе с верхней подачей дутья имеются благоприятные условия для шлакообразования (растворения извести): 1) высокая температура в шлаковой зоне ванны (до 2000°С), вызываемая взаимодействием струи кислорода с металлом; 2) интенсивное перемешивание ванны под действием струи кислорода и выделяющегося из ванны СО; 3) возможность изменения содержания оксидов железа в шлаке изменением положения кислородной фурмы относительно поверхности ванны. Формирование основного шлака сводится к растворению загружаемой в конвертер кусковой извести в жидкой шлаковой фазе—продуктах окисления составляющих чугуна (SiO2, MnO, FeO). Известь тугоплавка (температура плавления СаО составляет 2570 °С), поэтому для ее растворения необходимо взаимодействие СаО с окислами шлаковой фазы с образованием легкоплавких химических соединений. Для ускорения шлакообразования в конвертер в начале продувки обычно присаживают плавиковый шпат (CaF2), а также обогащают шлак оксидами железа за счет продувки при повышенном положении фурмы, и иногда за счет присадок железной руды, агломерата, окатышей, боксита. Шлаковый режим. После начала продувки в конвертер вводят первую порцию шлакообразующих — примерно 1/2—2/3 их общего количества. В эту порцию обычно входят известь и плавиковый шпат; иногда вместо плавикового шпата применяют боксит, агломерат, окатыши, железную руду. Оставшееся количество шлакообразующих вводят одной или несколькими порциями в течение 1/3 длительности продувки. Иногда для ускорения шлакообразования часть извести (20-40%) загружают в конвертер перед заливкой чугуна. Общий расход извести составляет 5—8 % от массы плавки; его определяют расчетом так, чтобы обеспечивалась требуемая основность шлака. Расход плавикового шпата обычно составляет 0,15—0,3 % и иногда достигает 1 %. Кроме плавикового шлака, разжижающего первичные шлаки, для ускорения формирования шлака продувку начинают при повышенном положении фурмы для насыщения шлака оксидами железа. По ходу продувки состав шлака изменяется: в результате растворения извести содержание СаО в шлаке возрастает, а содержание SiO2, MnO и FeO снижается. Заметно уменьшается содержание FeO в период наиболее интенсивного окисления углерода (середина продувки), когда сильное развитие получает реакция окисления углерода за счет окислов железа шлака. В конце продувки, когда углерода в металле мало, начинает окисляться железо и содержание FeO в шлаках возрастает.
Шлаки сталеплавильных процессов.
Роль шлаков в процессе производства стали исключительно велика. Шлаковый режим, определяемый количеством и составами шлака, оказывает большое влияние на качество готовой стали, стойкость футеровки и производительность сталеплавильного агрегата. Шлак образуется в результате окисления составляющих части шихты, из оксидов футеровки печи, флюсов и руды. По свойствам шлакообразующие компоненты можно разделить на кислотные (SiO2; P2O5; TiO2; V2O5 и др.), основные (CaO; MgO; FeO; MnO и др.) и амфотерные (Al2O3; Fe2O3; Cr2O3; V2O3 и др.) оксиды. Важнейшими компонентами шлака, оказывающими основное влияние на его свойства, являются оксиды SiO2 и CaO.
Шлак выполняет несколько важных функций в процессе выплавки стали:
1. Связывает все оксиды (кроме СО), образующиеся в процессе окисления примесей чугуна. Удаление таких примесей, как кремний, фосфор и сера, происходит только после их окисления и обязательного перехода в виде оксидов из металла в шлак. В связи с этим шлак должен быть надлежащим образом подготовлен для усвоения и удержания оксидов примесей; 2. Во многих сталеплавильных процессах служит передатчиком кислорода из печной атмосферы к жидкому металлу; 3. В мартеновских и дуговых сталеплавильных печах через шлак происходит передача тепла металлу; 4. Защищает металл от насыщения газами, содержащимися в атмосфере печи.
Изменяя состав шлака, можно отчищать металл от таких вредных примесей, как фосфор и сера, а также регулировать по ходу плавки содержание в металле марганца, хрома и некоторых других элементов. Для того, чтобы шлак мог успешно выполнять свои функции, он должен в различные периоды сталеплавильного процесса иметь определенный химический состав и необходимую текучесть (величина обратная вязкости). Эти условия достигаются использованием в качестве шихтовых материалов плавки расчетных количеств шлакообразующих — известняка, извести, плавикового шпата, боксита и др.
9.В какой форме газы присутствуют в жидком и твердом металле?
Газовые поры в отливке и их предотвращение.
Раковины часто возникают от газов, содержащихся в жидком металле. В жидком металле всегда присутствуют газы (азот, водород, кислород), растворенные или образовавшиеся в результате химических реакции между отдельными его компонентами. Атомарный водород растворяется в железе. Азот находится в металле в виде химических соединений с железом, кремнием, титаном и другими элементами, однако эти соединения могут разлагаться и выделять газообразный азот. Растворимость азота и водорода в железе (таблица) уменьшается с понижением температуры и при переходе железа из жидкого в твердое состояние. Например, при затвердевании железа (t = 1535" С) скачкообразно падает растворимость водорода с 23,4 до 7,85 смя/100 г. Кислород, растворимость которого в жидком железе увеличивается примерно пропорционально повышению температуры и при 1600° С составляет 0,22%, находится в железе в виде химического соединения — закиси железа FeO.
Состояние железа |
Температура |
Растворимость водорода см3 на 100грамм |
Растворимость азота см3 на 100грамм |
Твердое |
1535 |
7,85 |
24,5 |
Жидкое |
1540 |
23,4 |
31,2 |
Перегретое |
1600 |
27,0 |
35,0 |
Основной причиной возникновения раковин от газов, растворенных в металле, является скачкообразное падение растворимости газа в металле в период затвердевания. Такое понижение растворимости приводит к тому, что из закристаллизовавшейся твердой фазы газы переходят в расплав, который непрерывно ими обогащается. Степень обогащения незакристаллизовавшегося расплава газом зависит от скорости распространения газа в металле и скорости кристаллизации. В наибольшей степени остаточный расплав обогащается водородом. Зародышами газовых пузырьков в расплаве могут быть мельчайшие чрезвычайно медленно всплывающие пузырьки любого газа, различные неметаллические включения, грани растущих кристаллов металла, неровности стенок формы и т. п. Образующиеся в затвердевшем металле мелкие газовые пузырьки, не успевшие удалиться из отливки, образуют групповые раковины, поражающие большой объем отливки или отдельные ее части. Такой дефект называют газовой пористостью. В сталях всегда содержится закись железа FeO, образующаяся в результате окисления металла при плавке. Закись железа реагирует с углеродом, содержащимся в расплаве. Образующийся газообразный окисел СО также практически не растворим в металле и в процессе плавки свободно выходит из него в виде газовых пузырей. Однако если реакция между закисью железа и углеродом происходит в металле, залитом в форму, то при его быстром затвердевании пузыри СО не успевают удалиться из отливки и образуют в ней раковины (рис. 24). Именно поэтому при заливке форм плохо раскисленной сталью, содержащей значительное количество FeO, затвердевающий металл начинает вспучиваться и выходить из выпоров и прибылей, а количество газовых пузырей, образующихся в отливке, весьма велико. Закись железа может реагировать также с водородом, растворенным в металле, и образовывать водяные пары, которые, как и окись углерода, не растворимы в металле и способствуют возникновению раковин. Чугун отличается повышенным содержанием кремния, марганца и углерода, являющихся раскислителями, и закиси железа в нем значительно меньше, чем в стали. Следует отметить, что газовые раковины, образовавшиеся в результате механического проникновения газа в металл с поверхности форм и стержней, могут увеличиваться в объеме при выделении из расплава растворенных газов. Установлено, что в окисленном металле чаще образуются газовые раковины.
Способы предотвращения газовых раковин.
Для предупреждения газовых раковин, образующихся при механическом проникновении газов в металл (вскипе), следует уменьшать газотворность смесей, увеличивать скорость отвода газов из форм и стержней, способствовать удалению из отливки внедрившихся газовых пузырей до момента ее полного затвердевания. Уменьшение газотворности смесей и скорости газообразования в формах и стержнях достигается различными способами. Прежде всего необходимо устанавливать оптимальный состав формовочных и стержневых смесей. При этом смеси должны содержать минимальное количество газотворных материалов — воды, органических связующих, противопригарных добавок, глины, извести, слюды, асбеста и т. п. Наиболее газотворна вода, поэтому содержание ее в смесях должно быть ограничено. Некоторые связующие материалы гигроскопичны и впитывают влагу из окружающей среды после сушки. Повышенной гигроскопичностью обладают сульфитно-спиртовая барда, жидкое стекло, декстрин, крепители KB, КВС, СП, ДП, формовочные глины и другие материалы. Стержни па сульфитно-спиртовой барде способны впитать до 3—4% влаги при выдержке собранных форм перед заливкой 3—6 ч или полуформ 2—3 суток. Стержни на основе крепителей с высокой гигроскопичностью необходимо устанавливать в форму полностью остывшими, а формы заливать сразу же после сборки. Для сложных стержней применение смесей на гигроскопичных крепителях нецелесообразно. Радикальным способом снижения газовыделения при заливке является высушивание и прокаливание стержней и форм. При этом из них почти полностью удаляется вода и частично удаляются летучие продукты из связующего материала. Для стержней из самотвердеющих жидкостекольных и наливных смесей, содержащих в исходном состоянии до 5% влаги, рекомендуется обязательная сушка. При подсушке стержней и хорошей их вентиляции вскипы не происходят. Образованию газовых раковин в отливках может способствовать краска, обладающая повышенной газотворной способностью, особенно нанесенная толстым слоем. Окрашенные стержни надо подсушивать. Краски, сушка которых происходит при сгорании растворителя, не должны содержать больше 6—8% связующих материалов (в пересчете на сухой остаток). Слишком обильная смазка моделей разделительным составом и связанное с этим повышение газотворной способности поверхностных слоев формы приводят к появлению мелких газовых раковин в отливках. Поэтому разделительный состав следует наносить тонким слоем, но чаще. Повышение скорости отвода газов из форм и соответственно снижение давления газа достигается прежде всего уменьшением длины пути фильтрации газов. Для этого необходимо уменьшать расстояние от отливки до стенок и лада опок, предусматривать вентиляционные каналы в форме и стержне. Особенно это важно для форм, уплотненных при повышенном удельном давлении, так как такие формы обладают пониженной газопроницаемостью и, следовательно, в них повышается давление газа. Большое значение имеет тщательная вентиляция стержней. Так, при проверке исполнения технологической инструкции по изготовлению сложных стержней водяной рубашки головки блока двигателя ДТ-54 было выявлено, что многие стержни выполняются без вентиляционного канала, а в тех случаях, когда канал был выполнен, не были установлены пробки, закрывающие его от попадания металла. Заливка форм с такими стержнями сопровождалась длительными вскипами (6—20 сек), а отливки имели газовые раковины (рисунок). При тщательном выполнении вентиляционного канала в стержне и форме газовые раковины в отливках не образуются. Радикальным решением проблемы ликвидации брака по газовым раковинам от форм и стержней является использование оболочковых форм и стержней. В этом случае давление газа на границе металл—форма (стержень) не превышает 5 Г/см2 и значительно меньше критическое, равного 12—20 Г/см2. Должно быть обеспечено надежное удаление газов из стержней через форму. Для этого необходимо, чтобы вентиляционный канал в форме был продолжением вентиляционного канала стержня и чтобы обеспечивалась надежная защита знака стержня и вентиляционного канала от попадания металла. При заливке знака стержня или вентиляционного канала в форме может произойти длительный вскип (с выбросом металла из формы), и как следствие в отливке образуются групповые газовые раковины. Большое значение для хорошего газоотвода имеет увеличение газопроницаемости смесей. Она увеличивается при уменьшении влажности смесей, а также при снижении содержания в них глины и крепителей. Крупные пески повышают, а мелкие понижают газопроницаемость смеси; особенно резко снижается газопроницаемость при наличии в смеси мелких пылевидных частиц (маршалита, молотого угля). Снижение газопроницаемости наблюдается при добавке отработанной смеси; поэтому использование ее для изготовления сложных стержней нецелесообразно. С повышением плотности набивки газопроницаемость песчано-глинистых форм резко падает, а газопроницаемость стержневых смесей изменяется в меньшей степени. Пескодувно-пескострельная набивка обеспечивает наиболее равномерное уплотнение смеси и повышенную газопроницаемость стержней. При высушивании форм и стержней их газопроницаемость увеличивается. Особенно существенно увеличивается при этом газопроницаемость глино-опилочных смесей, в которых выгорают опилки. Для обеспечения хорошего газоотвода при исправлении форм и стержней отломившиеся части следует приклеивать не по всей поверхности излома, так как склеивающее вещество имеет плохую газопроницаемость (рис. 26), а по краям излома. Центральная часть должна обеспечивать свободный отвод газов. Вероятность образования газовых раковин уменьшается при создании специальных полостей в стержнях, которые, даже если они не соединяются специальным каналом со знаком стержня, снижают давление газа. Наиболее удобно создавать подобные полости в разъеме стержня.