Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Асимметричные криптографические системы. Систем...docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
30.69 Кб
Скачать

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ СОЦИАЛЬНЫЙ УНИВЕРСИТЕТ»

КУРСКИЙ ИНСТИТУТ СОЦИАЛЬНОГО ОБРАЗОВАНИЯ

(ФИЛИАЛ) РГСУ

Инженерно-технический факультет

Кафедра информационных систем и информационного права

РЕФЕРАТ

по дисциплине: «Методы и средства защиты компьютерной информации»

на тему: «Асимметричные криптографические системы. Системы с открытым ключом. Криптосистема RSA. Вычислительные аспекты реализации алгоритма RSA. Вопросы стойкости.»

Выполнил студент(ка) 4 курса группы

направление «Автоматизация и управление»

очной формы обучения

Намейкова Кристина Сергеевна

Проверил: Погосян. С.Л.

«__»_______2014 г.

Курск 2014 г

Криптографическая система с открытым ключом (или асимметричное шифрование, асимметричный шифр) — система шифрования и/или электронной цифровой подписи (ЭЦП), при которой открытый ключ передаётся по открытому (то есть незащищённому, доступному для наблюдения) каналу и используется для проверки ЭЦП и для шифрования сообщения. Для генерации ЭЦП и для расшифровки сообщения используется закрытый ключ. Криптографические системы с открытым ключом в настоящее время широко применяются в различных сетевых протоколах, в частности, в протоколах TLS и его предшественнике SSL (лежащих в основе HTTPS), в SSH. Также используется в PGP, S/MIME.

Cама односторонняя функция бесполезна в применении: ею можно зашифровать сообщение, но расшифровать нельзя. Поэтому криптография с открытым ключом использует односторонние функции с лазейкой. Лазейка — это некий секрет, который помогает расшифровать. То есть существует такой , что зная и , можно вычислить . К примеру, если разобрать часы на множество составных частей, то очень сложно собрать вновь работающие часы. Но если есть инструкция по сборке (лазейка), то можно легко решить эту проблему.

Понять идеи и методы криптографии с открытым ключом помогает следующий пример — хранение паролей в компьютере. Каждый пользователь в сети имеет свой пароль. При входе он указывает имя и вводит секретный пароль. Но если хранить пароль на диске компьютера, то кто-нибудь его может считать (особенно легко это сделать администратору этого компьютера) и получить доступ к секретной информации. Для решения задачи используется односторонняя функция. При создании секретного пароля в компьютере сохраняется не сам пароль, а результат вычисления функции от этого пароля и имени пользователя.

Криптотекстом будет являться цепочка номеров, записанных в порядке их выбора в справочнике. Чтобы затруднить расшифровку, следует выбирать случайные имена, начинающиеся на нужную букву. Таким образом исходное сообщение может быть зашифровано множеством различных списков номеров (криптотекстов). Чтобы расшифровать текст, надо иметь справочник, составленный согласно возрастанию номеров. Этот справочник является лазейкой (секрет, который помогает получить начальный текст), известной только легальным пользователям. Не имея на руках копии справочника, криптоаналитик затратит очень много времени на расшифровку.

RSA – криптографическая система открытого ключа, обеспечивающая такие механизмы защиты как шифрование и цифровая подпись (аутентификация – установление подлинности). Криптосистема RSA разработана в 1977 году и названа в честь ее разработчиков Ronald Rivest, Adi Shamir и Leonard Adleman.

Алгоритм RSA работает следующим образом: берутся два достаточно больших простых числа p и q и вычисляется их произведение n = p*q; n называется модулем. Затем выбирается число e, удовлетворяющее условию

1< e < (p - 1)*(q - 1) и не имеющее общих делителей кроме 1 (взаимно простое) с числом (p - 1)*(q - 1). Затем вычисляется число d таким образом, что (e*d - 1) делится на (p - 1)*(q – 1).

 e – открытый (public) показатель

 d – частный (private) показатель

 (n; e) – открытый (public) ключ

 (n; d). – частный (private) ключ. Делители (факторы) p и q можно либо уничтожить либо сохранить вместе с частным (private) ключом.

Если бы существовали эффективные методы разложения на сомножители (факторинга), то, разложив n на сомножители (факторы) p и q, можно было бы получить частный (private) ключ d. Таким образом надежность криптосистемы RSA основана на трудноразрешимой – практически неразрешимой – задаче разложения n на сомножители (то есть на невозможности факторинга n) так как в настоящее время эффективного способа поиска сомножителей не существует.

Ниже описывается использование системы RSA для шифрования информации и создания цифровых подписей (практическое применение немного отличается).

Шифрование

Предположим, Алиса хочет послать Бобу сообщение M. Алиса создает зашифрованный текст С, возводя сообщение M в степень e и умножая на модуль n: C = M**e* (mod n), где e и n – открытый (public) ключ Боба. Затем Алиса посылает С (зашифрованный текст) Бобу. Чтобы расшифровать полученный текст, Боб возводит полученный зашифрованный текст C в степень d и умножает на модуль n:

M = c**d*(mod n); зависимость между e и d гарантирует, что Боб вычислит M верно. Так как только Боб знает d, то только он имеет возможность расшифровать полученное сообщение.

Цифровая подпись

Предположим, Алиса хочет послать Бобу сообщение M , причем таким образом, чтобы Боб был уверен, что сообщение не было взломано и что автором сообщения действительно является Алиса. Алиса создает цифровую подпись S возводя M в степень d и умножая на модуль n: S = M**d*(mod n), где d и n – частный ключ Алисы. Она посылает M и S Бобу. Чтобы проверить подпись, Боб возводит S в степень e и умножает на модуль n: M = S**e*(mod n), где e и n – открытый (public) ключ Алисы.

Таким образом шифрование и установление подлинности автора сообщения осуществляется без передачи секретных (private) ключей: оба корреспондента используют только открытый (public) ключ своего корреспондента или собственный частный (private) ключ. Послать зашифрованное сообщение и проверить подписанное сообщение может любой, но расшифровать или подписать сообщение может только владелец соответствующего частного (private) ключа.

Скорость работы алгоритма rsa

Как при шифровании и расшифровывании, так и при создании и проверке подписи алгоритм RSA по существу состоит из возведения в степень, которое выполняется как ряд умножений.

В практических приложениях для открытого ключа обычно выбирается относительно небольшой показатель, а зачастую группы пользователей используют один и тот же открытый показатель, но каждый с различным модулем. Если открытый показатель неизменен, то вводятся некоторые ограничения на главные сомножители (факторы) модуля. При этом шифрование данных идет быстрее расшифровывания, а проверка подписи быстрее, чем подписание.

сли k — количество битов в модуле, то в обычно используемых для RSA алгоритмах количество шагов, необходимых для выполнения операции с открытым ключом, пропорционально второй степени k, количество шагов для операций частного ключа — третьей степени k, количество шагов для операции создания ключей — четвертой степени k.

Методы “быстрого умножения” (например, методы, основанные на быстром преобразовании Фурье (Fast Fourier Transform, FFT)) выполняются гораздо меньшим количеством шагов. Тем не менее, они не получили широкого распространения из-за сложности программной реализации, а также потому, что с распространенными размерами ключей они фактически работают медленнее. Однако производительность и эффективность приложений и оборудования, реализующих алгоритм RSA, быстро увеличиваются. Алгоритм RSA намного медленнее, чем DES и другие алгоритмы блочного шифрования. Программная реализация DES работает быстрее, по крайней мере, в 100 раз и от 1000 до 10 000 — в аппаратной реализации (в зависимости от конкретного устройства). Благодаря ведущимся разработкам, скорость алгоритма RSA, вероятно, увеличится, но одновременно ускорится и работа алгоритмов блочного шифрования.