
- •8. Принципи побудови каналоутворюючої апаратури цсп.
- •9. Регенератори кабельного цифрового лінійного тракту.
- •10 Принципи формування багатоканального сигналу.
- •2. Формирование вторичной группы(вг):
- •11. Структурна схема типового регенератора.
- •12. Структурна схема цсп.
- •13. Принцип роботи приладу, що формує часові інтервали в цсп.
- •14. Ікм кодеки з рівномірним квантуванням.
- •15. Ікм кодеки з нерівномірним квантуванням.
- •16. Розрахунок довжини ділянки регенерації.
- •18. Принцип організації дистанційного живлення нрп.
- •19. Принципи організації телеконтролю стану елементів кабельних цлт
- •21. Системи тактової синхронізації з автоматичним регулюванням частоти.
- •22. Основні електричні параметри аналогових каналів цсп
- •Циклова синхронізація в цсп та побудова схеми циклової синхронізації.
- •24. Вимірювання частотної характеристики залишкового затухання каналів тч цсп.
- •25. Основні електричні параметри цифрових каналів цсп.
- •26. Принцип часового об’єднання і розподілу цифрових сигналів в апаратурі цсп
- •27. Завадостійкість кабельного цифрового лінійного тракту.
- •28. Пасивний ам (кільцевого типу), схема, принцип дії, часові характеристики та спектральний склад вихідних струмів.
- •29. Синхронне та асинхронне об’єднання цифрових сигналів. Асинхронне об’єднання, з одностороннім та двустороннім узгодження швидкостей.
- •30. Недоліки плезіохронних с.П. Синхронна цифрова ієрархія.Загальні принципи побудови цифрових синхронних систем передачі (sdh).
- •32. Функціональні модулі sdh: мультиплексори smux, tm, adm; концентратори, регенератори, комутатори.
- •33. Топології та архітектура мережі sdh.
28. Пасивний ам (кільцевого типу), схема, принцип дії, часові характеристики та спектральний склад вихідних струмів.
Кольцевая или двойная балансная схема преобразователя (рис. 1.16.)
рис. 1.16. Кольцевая или двойная балансная схема
При одинаковых характеристиках всех диодов падения напряжений модулирующего сигнала на диодах будут равны друг другу. И напряжение модулирующего сигнала в нагрузке будет равно нулю.
В этой схеме ток в нагрузке преобразователя протекает в течение обоих полупериодов напряжения несущей частоты, но направление этого тока во время положительного и отрицательного полупериодов различно. Таким образом, преобразователь работает как переключатель направления тока. Форма тока на выходе преобразователя показана на рис
29. Синхронне та асинхронне об’єднання цифрових сигналів. Асинхронне об’єднання, з одностороннім та двустороннім узгодження швидкостей.
При асинхронном Объединении цифровых потоков находят применение системы как с односторонним, так и двусторонним согласованием скоростей.
В системах с односторонним согласованием скоростей частота Рсч.н выбирается заведомо большей или меньшей, чем fз (в зависимости от положительного илп отрицательного согласования скоростей). При этом в системах с положительным согласованием скоростей должно выполняться условие fсч.и.н - Δfсч.и max > fз.н + Δfзmах. Тогда при согласовании скоростей в считанную последовательность вводится дополнительный неинформационный (балластный) тактовый интервал (запретом одного импульса считывания) который на приеме исключается из нее по соответствующей команде согласования скоростей.
В системах с отрицательным согласованием скоростей должно выполняться условие fсч.и.н. + Δfсч. и. max < fз.н - Δfзmах.
Тогда при согласовании скоростей в этих системах на передаче из информационной последовательности изымается один тактовый интервал (дополнительное считывание), который передается по дополнительному каналу и на приеме по команде согласования скоростей снова вводится в информационную последовательность.
В системах с двусторонним согласованием скоростей частота fсч.и.н выбирается равной fз.н. При этом должно выполняться условие
fсч.и.н ± Δfсч.н max = fз.н ± Δfз max
30. Недоліки плезіохронних с.П. Синхронна цифрова ієрархія.Загальні принципи побудови цифрових синхронних систем передачі (sdh).
Недостатки PDH:
Затрудненный ввод/вывод цифровых потоков в промежуточных пунктах;
Отсутствие средств сетевого автоматического контроля и управления;
Многоступенчатое восстановление синхронизма требует достаточно большого времени;
Наличие трех различных иерархий.
SDH синхронная цифровая иерархия, СП со скоростью передачи на первом у-не 155,52 Мбит/с. Построение иерархии сохраняет принцип построения PDH.
32. Функціональні модулі sdh: мультиплексори smux, tm, adm; концентратори, регенератори, комутатори.
Мультиплексор (Multiplexer - MUX) - основной функциональный модуль сетей SDH и PDH. Этим термином обозначают устройства сборки (мультиплексирования) высокоскоростного потока из низкоскоростных и разборки (демультиплексирования), т.е. выделения из высокоскоростного низкоскоростных потоков.
SDH-мультиплексоры (SMUX) в отличие от мультиплексоров, используемых в сетях PDH, могут выполнять и функции собственно мультиплексора и устройства терминального доступа, позволяя подключать низкоскоростные каналы PDH-иерархии непосредственно к своим входным портам. К тому же, они способны решать задачи коммутации, концентрации и регенерации вследствие их конструкции. Таким образом, их возможности зависят лишь от системы управления и состава модулей. Различают два типа мультиплексоров: терминальные и ввода/вывода.
Терминальный мультиплексор (Terminal multiplexer - ТМ) является оконечным устройством SDH-сети с некоторым числом каналов доступа, соответствующим определенному уровню PDH- и SDH-иерархий. Для мультиплексора четвертого уровня SDH-иерархии (STM-64), имеющего скорость выходного потока 10 Гбит/с, входными каналами могут служить PDH-трибы со скоростью передачи данных 1.5, 2, 6, 8, 34, 45, 140 Мбит/с и SDH-трибы со скоростью 155, 622 и 2500 Мбит/с (соответствующие STM-1, STM-4, STM-16). Если PDH каналы являются электрическими, то SDH каналы могут быть как электрическими (STM-1), так и оптическими. У мультиплексоров третьего уровня исключается входной канал со скоростью 2500 Мбит/с, второго - еще и канал со скоростью 622 Мбит/с. У мультиплексоров первого уровня входными могут быть только PDH-трибы. Конкретный мультиплексор может и не поддерживать полный набор входных каналов доступа.
Мультиплексор ввода/вывода (Add/Drop Multiplexer - ADM) может иметь тот же набор каналов ввода, что и терминальный мультиплексор и дополнительно такой же набор каналов вывода.
Концентратор - вырожденный случай мультиплексора. Он объединяет однотипные потоки нескольких удаленных узлов сети в одном распределительном узле, связанном с главной транспортной магистралью. Это позволяет уменьшить общее число подключенных непосредственно к ней каналов. Концентратор дает возможность удаленным узлам обмениваться информацией между собой, не загружая основной трафик.
Регенератор - это мультиплексор, имеющий один входной канал доступа (как правило, оптический канал STM-n) и один или два (при использовании защиты 1+1) агрегатных выхода. Его применяют, если нужно увеличить расстояние между узлами SDH-сети. Без регенерации для одномодовых волоконно-оптических кабелей оно составляет 15-40 км ( при длине волны порядка 1300 нм) или 40-80 км (1500 нм), а с помощью регенератора его можно увеличить до 250-300 км.
Коммутатор - устройство, позволяющее связывать различные каналы, закрепленные за пользователями, путем организации полу постоянного перекрестного соединения между ними. Тем самым становится возможной маршрутизация в SDH-сети на уровне виртуальных контейнеров VC-n, управляемая менеджером сети в зависимости от заданной конфигурации.
Однако обычно используют специально разработанные коммутаторы (Synchronous Digital Cross-Connects - SDXC), осуществляющие не только локальную, но и сквозную (общую) коммутацию высокоскоростных потоков (со скоростью 34 Мбит/с и выше) и синхронных транспортных модулей STM-N