Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OTVETY_NA_ZAChET_PO_LOGIKE.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
168.23 Кб
Скачать

17. Индуктивные умозаключения. Виды индукции. Методы научной индукции.

Индуктивными называют умозаключения, в которых из единичных или частных суждений выводятся общие суждения.

Выводами индукции (от лат. inductio – наведение) являются общие суждения обо всех объектах какого-либо класса или множества. Такие множества могут быть:

1) конечными и обозримыми, т.е. возможно установить признаки (свойства и отношения) каждого элемента этого множества;

2) конечными, но не обозримыми, т.е. невозможно установить признаки (свойства и отношения) каждого элемента этого множества;

3) бесконечными.

При исследовании этих множеств применяются различные виды индукции.

В зависимости от того, перечислены ли в посылках все или не все элементы изучаемого множества, различают полную и неполную индукцию.

Полная индукция относится к конечным и обозримым множествам.

Полная индукция - это индуктивное умозаключение, в котором общее заключение обо всех элементах множества делается на основании рассмотрения каждого из них.

Поскольку полная индукция предполагает исследование каждого элемента изучаемого множества, её заключение, как и в дедукции, дает достоверное знание, т.е. она гарантирует истинность заключения при истинности посылок.

Схема полной индукции:

а1 имеет признак Р.

а2 имеет признак Р.

...

аn имеет признак Р.

(а1, а2, ..., аn)=А

Все предметы, принадлежащие

множеству А, имеют признак Р.

Неполная индукция относится к бесконечным, открытым множествам, а также к конечным, но практически не перечислимым в силу большого числа их элементов. Именно с такими множествами обычно имеет дело наука, поэтому неполная индукция более распространена в научном познании. С помощью неполной индукции, в принципе, можно делать заключения и о конечных, обозримых множествах.

Неполная индукция - это индуктивное умозаключение, выводом которого является общее суждение о множестве предметов, получаемое на основании знания только некоторых предметов, принадлежащих данному множеству.

В индуктивных выводах такого типа происходит приращение информации. В силу этого истинность посылок не гарантирует истинность заключения, и заключение является истинным лишь с большей или меньшей степенью вероятности. Другими словами, неполная индукция даёт вероятное, правдоподобное знание. Посылки здесь лишь подтверждают заключение. По существу, они лишь подводят к некоторому предположению, «наводят» на него (отсюда и название умозаключения). Но при этом из истинных посылок может получиться ложное заключение.

Схема неполной индукции:

а1 имеет признак Р.

а2 имеет признак Р.

...

аn имеет признак Р.

(а1, а2, ..., аn)Ì А

Вероятно, все предметы (а), принадлежащие

множеству А, имеют признак Р.

ВИДЫ ИНДУКЦИИ

Полными называются умозаключения, в которых вывод делается на основе всестороннего изучения всей совокупности предметов определенного класса.

Применяется полная индукция только в случаях, когда можно определить весь круг предметов, входящих в рассматриваемый класс, т. е. когда их число ограничено. Таким образом, полная индукция применяется лишь в отношении замкнутых классов. В этом смысле применение полной индукции не очень распространено.

Для того чтобы можно было говорить о полной индукции, необходимо проверять соблюдение ее правил, условий. Так, первое правило гласит, что количество предметов, входящих в рассматриваемый класс, должно быть ограничено и определено; их количество не должно быть большим. Каждому элементу взятого класса, относительно которого создается умозаключение, должен быть присущ характерный признак. И наконец, выведение полного умозаключения должно быть обоснованным, необходимым, рациональным.

Неполной индукцией называют умозаключение, которое на основе наличия определенных повторяющихся признаков причисляет тот или иной предмет к классу однородных ему предметов, также имеющих такой признак.

Неполная индукция часто применяется в повседневной жизни человека и научной деятельности, так как позволяет делать заключение на основе анализа определенной части данного класса предметов, экономит время и силы человека. При этом нельзя забывать, что в результате неполной индукции получается вероятностное заключение, которое в зависимости от вида неполной индукции будет колебаться от менее вероятного к более вероятному[11] .

Схему неполной индукции можно представить как:

51 – Р

52 – Р

53 – Р

S1, S2, S3... составляют класс К.

Вероятно, каждый элемент К – Р.

Популярная неполная индукция, или индукция через простое перечисление, рассматривает предметы и классы, к которым эти предметы относятся, не очень глубоко. Так, на основе повторяемости одного и того же признака у некоторой части однородных предметов и при отсутствии противоречащего случая делается общее заключение, что все предметы этого рода обладают этим признаком.

Научная индукция, или индукция через анализ фактов, представляет собой умозаключение, в посылках которого наряду с повторяемостью признака у некоторых явлений класса содержится также информация о зависимости этого признака от определенных свойств явления.

То есть в отличие от популярной индукции научная не ограничивается простой констатацией. Рассматриваемый предмет подвергается глубокому исследованию. В научной индукции очень важно соблюдать ряд требований:

МЕТОДЫ НАУЧНОЙ ИНДУКЦИИ

1) предметы исследования должны отбираться планомерно и рационально;

2) необходимо как можно глубже познать природу рассматриваемых предметов;

3) уяснять характерные признаки предметов и их связей;

4) сравнивать результаты с закрепленными ранее научными сведениями.

Важной чертой научной индукции, определяющей ее роль в науке, является способность раскрывать не только обобщенные знания, но и причинные связи. Именно при помощи научной индукции были открыты многие научные законы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]