
- •1.Белки, их структура и функции. Классификация белков.
- •2.Основные классы аминокислот.
- •3. Физико-химические свойства белков. Качественные реакции на белки.
- •4. Количественные методы определения аминокислот.
- •5.Первичная структура белков. В чем разница между первичной и вторичной структурами белков.
- •6. Какие типы химических связей встречаются в белковой молекуле и какова их роль в структуре белков.
- •7. Физико-химические свойства аминокислот.
- •8. Усвоение азотистых соединений растительными организмами.
- •9. Первичный синтез аминокислот. Реакции аминирования и переаминирования.
- •10. Вторичное образование аминокислот при гидролизе. Пептидгидролазы.
- •11. Основные этапы биосинтеза белка.
- •12. Нуклеиновые кислоты и биосинтез белка.
- •13. Ген, генетический код. Характерные особенности генетического кода.
- •14. Основные стадии сборки полипептидной цепи в процессе трансляции.
- •15. Механизм действия ферментов.
- •16. Основные особенности ферментов как биологических катализаторов.
- •17. Строение ферментов.
- •18. Влияние концентрации субстрата на скорость ферментативной реакции. Константа Михаэлиса.
- •19. Влияние температуры, кислотности среды на работу фермента.
- •20. Влияние ингибиторов и активаторов на работу ферментов.
- •21.Обратимые и необратимые ингибирование.
- •23. Характеристика класса оксидоредуктаз.
- •24. Характеристика класса гидролаз.
- •25. Характеристика класса лиаз.
- •26. Характеристика классов изомераз и лигаз.
- •27. Характеристика подкласса олигаз и полиаз и их значение для пищевых технологий.
- •28. Характеристика подкласса протеаз.
- •29. Реакции, катализируемые оксидазами и значение этих ферментов для пищевых технологий.
- •30. Пероксидаза и каталаза и значение этих ферментов для пищевых технологий.
- •31. Классификация липидов. Основные функции липидов.
- •32. Жиры и их свойства, ферментативный гидролиз.
- •33. Полярные липиды (фосфо- и гликолипиды). Участие в построении биологических мембран и роль в пищевой промышленности.
- •34. Неомыляемые липиды – терпены и стероиды.
- •35. Прогоркание жиров. Кислотное, йодное число и число омыления.
- •36. Кофермент а и его роль в процессе обмена липидов.
- •37. Важнейшие стадии β-окисленя жирных кислот. Локализация этого процесса в клетке.
- •38. Сколько циклов β-окисления необходимо для полного окисления пальмитиновой кислоты и каков энергетический выход этого процесса.
- •39. Назовите основные отличия процессов синтеза и окисления жирных кислот.
- •40. Основные функции углеводов в живых организмах.
- •41. Основные этапы синтеза триацилглицеролов.
- •42. Классификация углеводов.
- •43. Моносахариды. Их структура и свойства. Важнейшие представители моносахаридов.
- •44. Вид изомерии моносахаридов.
- •46. Гликозидная связь и ее значение. Роль гликозидов в пещевой промышленности.
- •47. Взаимодействие углеводов со спиртами, кислотами и продукты, образующиеся в процессе этих реакций.
- •49. Реакция меланоидинообразования и карамелизации и значение их для пищевой промышленности.
- •51.Полисахариды второго порядка. Крахмал и гликоген как запасная форма полисахаридов.
- •53. Нуклеиновые кислоты. Химическое строение, свойства и биологические функции.
- •54. Какие нуклеиновые кислоты вы знаете и как они распределены в клетке. Биологическая роль нуклеиновых кислот.
- •56. При помощи каких связей формируется структура нуклеиновых кислот.
- •58. Назовите важнейшие нуклеотиды, не входящие в состав нуклеиновых кислот.
- •59. Физико-химические свойства нуклеиновых кислот и их функции.
- •61.Какую физиологическую роль выполняют витамины в организме животных и человека?
- •62. Важнейшие жирорастворимые витамины и заболевания, связанные с их недостатком. Что такое авитаминоз.
- •63. Важнейшие водорастворимые витамины и заболевания, связанные с их недостатком. Что такое гипо- и гипервитаминоз.
- •64. Витамины группы а. Распространение в природе и физиологическая функция этих витаминов. Особенности химического строения.
- •65. Витамины группы д. Распространение в природе и заболевания, связанные с недостатком этого витамина.
- •66.Витамины группы е. Распространение в природе и заболевания, связанные с недостатком этого витамина. Физиологические функции витамина е.
- •67. Витамины группы к. Распространение в природе и физиологические функции витамина к.
- •68. Витамин в1(тиамин). Распространение в природе. Физиологические функции витамина и заболевания, связанные с недостатком этого витамина.
- •69. Витамин в2 (рибофлавин). Физиологическая функция, связанная с особенностями строения витамина.
- •70. Витамин в6(пиридоксин). Физиологическая функция витамина в6, связанная с коферментной ролью его в работе некоторых ферментов.
- •71.Витамин в12.Распространение в природе и заболевания,вызванные недостатком этого витамина
- •72. Витамин рр.Расространение в природе и физиологическая функция
- •73.Витамин с.Физиологическая функция, связанная с особенностями химического строения этого витамина.
- •74.Пантотеновая к-та,ее химическое строение.Как связана пантотеноавя к-та с коферментом а.
- •75.Биотин,его роль в реакциях карбоксилирования.Распространение в природе.
- •76.Антивитамины и их действие на организм
- •77. Что такое фотосинтез .Роль фотосинтеза в природе.
- •78. Химизм фотосинтеза
- •79. Какие продукты образуются в ходе световой фазы реакции.
- •80. Что такое цикл Кальвина,какие продукты образуются в ходе этого процесса
- •81. Что такое дыхание. Напишите общее уравнение дыхания. Какие 2 типа дыхания вы знаете?
- •82. Что такое брожение? Типы брожения. Отрасли промышленности, в которых применяются различные типы брожения.
- •85. Биологическое значение процесса брожения.
- •87. Анаэробный путь превращения пировиноградной кислоты.
- •88.Основные этапы гликолиза.
- •89. Основные стадии аэробной фазы дыхания.
- •90.Процессы, происходящие при дыхании растительного сырья.
- •91.Химическая природа и биологическая роль каратиноидов. Важнейшие представители у растений.
- •92.Влияние температуры и влажности на дыхание растительного сырья.
- •93. Химизм процесса дыхания. Цикл Кребса. Цикл Кребса
- •Реакции цтк
- •94. Энергетика процесса дыхания.
- •95. Роль процесса дыхания в жизнедеятельности организма.
- •96. Биологические функции аминокислот и их роль в пищевой промышленности.
16. Основные особенности ферментов как биологических катализаторов.
1)Ферментативная реакция протекает в нормальных условиях и не требует жестких условий. 2)Ферменты строго спецефичны, действуют на определенный субстрат. 3)Ферментативная реакция идет последовательно. 4)Скорость реакции высока, но она зависит от кол-ва активности ферментов, концентрации субстрата, рН среды, состава раствора, температуры, присутсвия активаторов и ингибиторов. 5)идут со 100% выходом и не дают побочных продуктов. 6)ферменты яв-ся белками.
17. Строение ферментов.
Субстратом (S) называют вещество, химические превращения которого в продукт (Р) катализирует фермент (Е). Тот участок поверхности молекулы фермента, который непосредственно взаимодействует с молекулой субстрата, называется активным центром фермента.
Активный центр фермента образован из остатков аминокислот, находящихся в составе различных участков полипептидной цепи или различных полипептидных цепей, пространственно сближенных. Образуется на уровне третичной структуры белка-фермента.
В его пределах различают Адсорбционный участок (центр) и каталитический участок (центр). Кроме того, вне активного центра фермента встречаются особые функциональные участки; каждый из них обозначают термином аллостерический центр.
Каталитический центр - это та область (зона) активного центра фермента, которая непосредственно участвует в химических преобразованиях субстрата. Формируется он за счет радикалов двух, иногда трех аминокислот, расположенных в разных местах полипептидной цепи фермента, но пространственно сближенных между собой за счет изгибов этой цепи. Например, каталитический центр "серин-гистидиновых" ферментов формируется за счет радикалов аминокислот серина и гистидина. Если фермент является сложным белком, то в формировании каталитического центра нередко участвует простетическая группа молекулы фермента (кофермент). Коферментную функцию выполняют все водорастворимые витамины и жирорастворимый витамин K.
Адсорбционный центр - это участок активного центра молекулы фермента, на котором происходит сорбция (связывание) молекулы субстрата. Он формируется 1-3 радикалами аминокислот, которые обычно расположены рядом с каталитическим центром. Главная его функция - связывание молекулы субстрата и передача этой молекулы каталитическому центру в наиболее удобном положении (для каталитического центра). Эта сорбция происходит только за счет слабых типов связей и потому является обратимой. По мере формирования этих связей происходит конформационная перестройка адсорбционного центра, которая приводит к более тесному сближению субстрата и активного центра фермента, более точному соответствию между их пространственными конфигурациями.
Очевидно, что именно структура адсорбционного центра определяет субстратную специфичность фермента, т. е. требования фермента к молекуле химического вещества, чтобы она могла стать для него подходящим субстратом.
Аллостерическими центрами называют такие участки молекулы фермента вне его активного центра, которые способны связываться слабыми типами связей (значит - обратимо) с тем или иным веществом (лигандом). Причем такое связывание приводит к такой конформационной перестройке молекулы фермента, которая распространяется и на активный центр, облегчая, либо затрудняя (замедляя) его работу. Соответственно такие вещества называются аллостерическими активаторами или аллостерическими ингибаторами данного фермента.
Термин "аллостерический" (т. е. "имеющий иную пространственную структуру") появился в связи с тем, что эти эффекторы по своей пространственной конфигурации совсем не похожи на молекулу субстрата данного фермента (и потому не могут связываться с активным центром фермента). Аллостерический центр не похож по своей структуре на активный центр фермента.