
- •136. Магнітне поле.
- •137. Закон Біо-Савара-Лапласа
- •138. Напруженість та магнітна індукція. Сила Лоренца.
- •139. Магнітні поля колового та нескінченного струму.
- •140 Сила Ампера.
- •143. Потік магнітного поля. Закон електромагнітної індукції Фарадея.
- •144. Принцип дії електричного генератора змінного струму.
- •145. Класифікація матеріалів за магнітними властивостями.
- •146. Феромагнетики, парамагнетики та діамагнетики.
- •147. Принципи мас спектрометрії.
- •149. . Електричні прилади і їх використання.
- •150. Розширення меж використання електроприлпадів
- •151. Променева трубка. Принцип роботи осцилографа.
- •152. Умови виникнення періодичного руху.
- •153. Електричні коливання. Електричний коливальний контур.
- •154. . Згасаючі електричні коливання.
- •155. Активний та реактивний опори
- •156. . Коливальний контур.
- •158. Електромагнітні хвилі та їх взаємодія з речовиною.
- •159. Фігури Ліссажу.
- •160. . Вимушені колива ння. Явище резонансу
- •161. Відкритий коливальний контур.
- •162. Рівняння електромагнітної поля.
- •163. Принцип радіозв’язку. Модульований радіосигнал.
- •165. . Енергія світлової хвилі. Вектор Пойтінга.
- •168. .Фотометрія. Сила світла, освітленість, світимість - визначення та одиниці виміру.
- •169. . Геометрична оптика.
- •170. Тонка лінза. Оптична сила, фокусна відстань, фокальна площина тонкої лінзи.
- •171. Формула тонкої лінзи той, що збирає і той, що розсіюс.
- •172. Побудова оптичних зображень за допомогою тонкої лінзи
- •173. . Інтерференція світла і її умови
- •174. . Інтерференція світла від двох когерентних джерел.
- •176. Дисперсія світла. Дослідження Ньютона.
- •177. Дифракція світла. Дифракційна ґратка.
- •178. Елементи квантової фізики. Принцип невизначеності
- •180. Серії випромінювання, квантування енергії.
- •181. Потенціальна яма. Тунельний ефект.
- •182. Потенціальний бар’єр.
- •183. . Ефект Комптона.
- •184. Явище фотоефекту. Формула Ейнштейна для фотоефекту.
- •185. Закони Столєтова для фотоефекту.
- •186. Тиск світла
- •187. Хвилі де Бройля
- •188. . Співвідношення невизначеностей Гейзенберга
- •189. Рівняння Шредингера
- •190. Будова атома. Досліди Резерфорда.
- •191. Постулати Бора.
- •192. Серії випромінювання, квантування енергії.
- •193. Атомне ядро.
- •194. .Радіоактивність.
- •195. . Закон радіоактивного розпаду.
- •196. Радіоактивне випромінювання та взаємодія його з речовиною.
- •197. Взаємозв'язок маси та енергії матерії.
- •198. Ядерний розпад.
- •199. Ланцюгова реакція.
- •200. Термоядерний синтез.
- •201. Термоядерний синтез.
- •202. Загальні відомості про елементарні частинки.
- •205. Динамічні методи дослідження сировини і матеріалів
156. . Коливальний контур.
Колива́льний ко́нтур— система, що складається з послідовно з’єднаних конденсатора ємністю С, котушки індуктивністю Л, провідника з омічним опором Р, в якій можуть збуджуватись електричні коливання.
В загальному випадку активний опір R включає не тільки активні опори провідників, а й опір, зв'язаний з витратами на випромінювання, що виникає внаслідок відкритості конденсатора та індуктивності.
У випадку, коли активний опір малий, і ним можна знехтувати, коливальний контур називаю LC-контуром.
В ланку коливального контура можна добавити перемикач для аналізу процесу накопичення зарядів на ємності.
Період – час, протягом якого в коливальному контурі відбувається один повний цикл змін і контур повертається в початковий стан.
Власні електричні коливання – які відбуваються внаслідок процесів у самому коливальному контурі без зовнішніх впливів і втрат енергії. Циклічна частота: w=1/LC; період, частота
157.
Векторна
діаграма
- графічне зображення мінливих за
законом синуса ( косинуса ) величин і
співвідношень між ними за допомогою
спрямованих відрізків - векторів .
Векторні діаграми широко застосовуються
в електротехніці , акустиці , оптиці ,
теорії коливань і так далі. Гармонійне
(тобто синусоидальное ) коливання може
бути представлено графічно у вигляді
проекції на деяку вісь ( зазвичай беруть
вісь координат Оx
) вектора , що обертається з постійною
кутовою швидкістю ω
. Довжина вектора відповідає амплітуді
, кут повороту щодо осі ( Ox
) - фазі. Сума
(або різниця) двох і більше коливань на
векторній діаграмі представлена при
цьому (геометричної ) сумою (або різницею
) векторів цих коливань . Миттєве значення
шуканої величини визначається при
цьому проекцією вектора суми на вісь
Оx , амплітуда - довжиною цього вектора
, а фаза - кутом його повороту щодо Ox Векторні
діаграми можна вважати варіантом (і
ілюстрацією ) подання коливань у вигляді
комплексних чисел. При такому зіставленні
вісь Ox відповідає осі дійсних чисел, а
вісь Oy - осі чисто уявних чисел (позитивний
одиничний вектор уздовж якої є уявна
одиниця). Тоді вектор довжиною A , що
обертається в комплексній площині з
постійною кутовий швидкістю ω з
початковим кутом φ0 запишеться як
комплексне число:
-
є гармонійне коливання з циклічною
частотою ω і початковою фазою φ0 .
,
а його дійсна частина
158. Електромагнітні хвилі та їх взаємодія з речовиною.
Електромагнітна хвиля — процес розповсюдження електромагнітної взаємодії в просторі. Електромагнітні хвилі описуються загальними для електромагнітних явищ рівняннями Максвелла. Навіть у випадку відсутності у просторі електричних зарядів і струмів рівняння Максвелла мають відмінні від нуля розв'язки. Ці розв'язки описують електромагнітні хвилі. У вакуумі електромагнітна хвиля розповсюджується із швидкістю, яка називається швидкістю світла. Швидкість світла є фундаментальною фізичною константою, яка позначається латинською літерою c. Згідно із основним постулатом теорії відносності швидкість світла є максимально можливою швидкістю передачі інформації чи руху тіла. Ця швидкість становить 299 792 458 м/с.
Електромагнітна хвиля характеризується частотою. Розрізняють лінійну частоту ν й циклічну частоту ω = 2πν. В залежності від частоти електромагнітні хвилі належать до одного із спектральних діапазонів.
Іншою
характеристикою електромагнітної хвилі
є хвильовий вектор
. Хвильовий вектор визначає напрямок
розповсюдження електромагнітної хвилі,
а також її довжину. Абсолютне значення
хви льового вектора називають хвильовим
числом.
Електромагнітні хвилі із однаковою частотою й хвильовим вектором можуть розрізнятися фазою.
У порожнечі вектори напруженості електричного й магнітного полів електомагнітної хвилі обов'язково перпендикулярні до напрямку розповсюдження хвилі. Такі хвилі називаються поперечними хвилями. Математично це описується рівняннями та . Крім того, напруженості елекричного й магнітного полів перпендикулярні одна до одної й завжди в будь-якій точці простору рівні за абсолютною величиною: E = H [1]. Якщо вибрати систему координат таким чином, щоб вісь z збігалася з напрямком поширення електромагнітної хвилі, існуватимуть дві різні можливості для напрямків векторів напруженості електричного поля. Якщо електичне поле направлене вздовж осі x, то магнітне поле буде направлене вздовж осі y, і навпаки. Ці дві різні можливості не виключають одна одну й відповідають двом різним поляризаціям. Детальніше це питання розбирається в статті Поляризація електромагнітної хвилі. Електромагнітне поле є формою матерії, через яку здійснюється взаємодія між електрично зарядженими частинками. Поняття поля (електричного та магнітного) ввів М. Фарадей у 1830 р. Згідно з цими уявленнями, заряджені частинки або струми створюють в усіх точках оточуючого їх простору особливий стан — поле, яке діє на всяку іншу заряджену частинку або струм, вміщені в довільну точку цього простору. Отже, поле заряджених електричних частинок або струмів зосереджене в усіх точках простору, що їх оточує. У кожній такій точці електромагнітне поле характеризується енергією, імпульсом тощо.
Електромагнітне поле може існувати і вільно, незалежно від джерел, які його створили, у вигляді електромагнітних хвиль. У 1865 р. Дж. Максвелл теоретично показав, що електромагнітні коливання за своєю внутрішньою природою мають властивість поширюватись у просторі зі швидкістю світла.
А в середині 60-х років ХІХ ст. Максвелл, працюючи над експерементальними результатами (дослідження явища електромагнітної індукції) Фарадея, дійшов висновку, що в природі існує зворотній процес - змінне електричне поле викликає появу змінного магнітного поля (вихрового). Отже, магнітне поле може створюватися не тільки електричним струмом - рухомими зарядами, але й змінним електричним полем, так як це зображено