
- •136. Магнітне поле.
- •137. Закон Біо-Савара-Лапласа
- •138. Напруженість та магнітна індукція. Сила Лоренца.
- •139. Магнітні поля колового та нескінченного струму.
- •140 Сила Ампера.
- •143. Потік магнітного поля. Закон електромагнітної індукції Фарадея.
- •144. Принцип дії електричного генератора змінного струму.
- •145. Класифікація матеріалів за магнітними властивостями.
- •146. Феромагнетики, парамагнетики та діамагнетики.
- •147. Принципи мас спектрометрії.
- •149. . Електричні прилади і їх використання.
- •150. Розширення меж використання електроприлпадів
- •151. Променева трубка. Принцип роботи осцилографа.
- •152. Умови виникнення періодичного руху.
- •153. Електричні коливання. Електричний коливальний контур.
- •154. . Згасаючі електричні коливання.
- •155. Активний та реактивний опори
- •156. . Коливальний контур.
- •158. Електромагнітні хвилі та їх взаємодія з речовиною.
- •159. Фігури Ліссажу.
- •160. . Вимушені колива ння. Явище резонансу
- •161. Відкритий коливальний контур.
- •162. Рівняння електромагнітної поля.
- •163. Принцип радіозв’язку. Модульований радіосигнал.
- •165. . Енергія світлової хвилі. Вектор Пойтінга.
- •168. .Фотометрія. Сила світла, освітленість, світимість - визначення та одиниці виміру.
- •169. . Геометрична оптика.
- •170. Тонка лінза. Оптична сила, фокусна відстань, фокальна площина тонкої лінзи.
- •171. Формула тонкої лінзи той, що збирає і той, що розсіюс.
- •172. Побудова оптичних зображень за допомогою тонкої лінзи
- •173. . Інтерференція світла і її умови
- •174. . Інтерференція світла від двох когерентних джерел.
- •176. Дисперсія світла. Дослідження Ньютона.
- •177. Дифракція світла. Дифракційна ґратка.
- •178. Елементи квантової фізики. Принцип невизначеності
- •180. Серії випромінювання, квантування енергії.
- •181. Потенціальна яма. Тунельний ефект.
- •182. Потенціальний бар’єр.
- •183. . Ефект Комптона.
- •184. Явище фотоефекту. Формула Ейнштейна для фотоефекту.
- •185. Закони Столєтова для фотоефекту.
- •186. Тиск світла
- •187. Хвилі де Бройля
- •188. . Співвідношення невизначеностей Гейзенберга
- •189. Рівняння Шредингера
- •190. Будова атома. Досліди Резерфорда.
- •191. Постулати Бора.
- •192. Серії випромінювання, квантування енергії.
- •193. Атомне ядро.
- •194. .Радіоактивність.
- •195. . Закон радіоактивного розпаду.
- •196. Радіоактивне випромінювання та взаємодія його з речовиною.
- •197. Взаємозв'язок маси та енергії матерії.
- •198. Ядерний розпад.
- •199. Ланцюгова реакція.
- •200. Термоядерний синтез.
- •201. Термоядерний синтез.
- •202. Загальні відомості про елементарні частинки.
- •205. Динамічні методи дослідження сировини і матеріалів
149. . Електричні прилади і їх використання.
Електри́чний при́стрій — це пристрій який працює за допомогою електроенергії, перетворюючи її в будь яку іншу енергію. Електровимі́рювальні при́лади — клас пристроїв, що застосовуються для виміру різних електричних величин. У наш час електричні вимірювання й електричні прилади посідають одне з чільних місць у житті цивілізованого людства. За частотою застосувань електричні вимірювання поступаються хіба що лише вимірюванням довжини, маси та температури. Електричні вимірювання застосовуються не лише для вимірювань власне електричних величин (напруги, струму, потужності, енергії, опору, частоти, зсуву фаз, ємності та ряду магнітних величин), а й при використанні перетворювачів для вимірювання багатьох неелектричних величин (тиску, температури, швидкості, параметрів вібрації, рівня рідин та сипучих матеріалів, витрати рідин та газоподібних речовин, величин потужних деформацій, відстаней тощо).
В енергетиці електровимірювальні прилади використовують не тільки для поточного контролю роботи енергообладнання, а й для пошуку його пошкоджень. Причому саме за допомогою електричних вимірювань візуально недосяжні пошкодження обладнання знаходять найвище й найточніше. Потенціальні можливості промисловості, що виробляє електровимірювальні прилади, в Україні надзвичайно великі й значною мірою перевищують потреби країни у цих приладах.
Важко уявити нашу працю і побут без електрики. Її широко використовують у промисловості, на транспорті, у зв’язку, в медицині й мистецтві. Електрика дозволила створити нові технології виробництва і матеріали, яких немає в природі.
Електровимірювальний прилад складається з вимірювального механізму, який поміщений у корпус, та допоміжних частин (затиски для підключення, перемикачі меж вимірювань, блок живлення, коректор та інші). Вимірювальний механізм складається з рухомої і нерухомої частин, та має шкалу з певною кількістю поділок.
Принцип дії вимірювального механізму може бути заснований на явищі електромагнетизму, електромагнітної сили або теплової дії струму. В результаті цих явищ виникає обертаючий момент, який повертає рухому частину вимірювального механізму разом з покажчиком (стрілкою). Стрілка відхиляється на кут, прямо пропорційний значенню вимірюваної фізичної величини. В протидію обертаючому моменту (електромагнітним або механічним шляхом) створюється рівний та протидіючий момент, тому що інакше стрілка буде відхилятися до кінця шкали при будь-якому значенні вимірюваної величини (відмінної від нуля).
Електровимірювальні прилади характеризуються наступними величинами:
1. Межа вимірювання – найбільше значення фізичної величини, яке можна вимірити приладом.
2. Ціна поділки – кількість одиниць вимірюваної фізичної величини в одній поділці шкали приладу
3. Чутливість – кількість поділок шкали, на яку відхиляється стрілка приладу при зміні вимірюваної фізичної величини на одну одиницю
5. Абсолютна похибка – різниця між показанням приладу та дійсним значенням вимірюваної фізичної величини
6. Відносна похибка – відношення абсолютної похибки до дійсного значення вимірюваної фізичної величини (виражене у відсотках)
7.Приведена похибка – відношення абсолютної похибки до межі вимірювання приладу (виражене у відсотках)
8. Клас точності – відношення максимальної абсолютної похибки (встановлюваної при проектуванні приладу) до межі вимірювання приладу (виражене у відсотках)