
- •136. Магнітне поле.
- •137. Закон Біо-Савара-Лапласа
- •138. Напруженість та магнітна індукція. Сила Лоренца.
- •139. Магнітні поля колового та нескінченного струму.
- •140 Сила Ампера.
- •143. Потік магнітного поля. Закон електромагнітної індукції Фарадея.
- •144. Принцип дії електричного генератора змінного струму.
- •145. Класифікація матеріалів за магнітними властивостями.
- •146. Феромагнетики, парамагнетики та діамагнетики.
- •147. Принципи мас спектрометрії.
- •149. . Електричні прилади і їх використання.
- •150. Розширення меж використання електроприлпадів
- •151. Променева трубка. Принцип роботи осцилографа.
- •152. Умови виникнення періодичного руху.
- •153. Електричні коливання. Електричний коливальний контур.
- •154. . Згасаючі електричні коливання.
- •155. Активний та реактивний опори
- •156. . Коливальний контур.
- •158. Електромагнітні хвилі та їх взаємодія з речовиною.
- •159. Фігури Ліссажу.
- •160. . Вимушені колива ння. Явище резонансу
- •161. Відкритий коливальний контур.
- •162. Рівняння електромагнітної поля.
- •163. Принцип радіозв’язку. Модульований радіосигнал.
- •165. . Енергія світлової хвилі. Вектор Пойтінга.
- •168. .Фотометрія. Сила світла, освітленість, світимість - визначення та одиниці виміру.
- •169. . Геометрична оптика.
- •170. Тонка лінза. Оптична сила, фокусна відстань, фокальна площина тонкої лінзи.
- •171. Формула тонкої лінзи той, що збирає і той, що розсіюс.
- •172. Побудова оптичних зображень за допомогою тонкої лінзи
- •173. . Інтерференція світла і її умови
- •174. . Інтерференція світла від двох когерентних джерел.
- •176. Дисперсія світла. Дослідження Ньютона.
- •177. Дифракція світла. Дифракційна ґратка.
- •178. Елементи квантової фізики. Принцип невизначеності
- •180. Серії випромінювання, квантування енергії.
- •181. Потенціальна яма. Тунельний ефект.
- •182. Потенціальний бар’єр.
- •183. . Ефект Комптона.
- •184. Явище фотоефекту. Формула Ейнштейна для фотоефекту.
- •185. Закони Столєтова для фотоефекту.
- •186. Тиск світла
- •187. Хвилі де Бройля
- •188. . Співвідношення невизначеностей Гейзенберга
- •189. Рівняння Шредингера
- •190. Будова атома. Досліди Резерфорда.
- •191. Постулати Бора.
- •192. Серії випромінювання, квантування енергії.
- •193. Атомне ядро.
- •194. .Радіоактивність.
- •195. . Закон радіоактивного розпаду.
- •196. Радіоактивне випромінювання та взаємодія його з речовиною.
- •197. Взаємозв'язок маси та енергії матерії.
- •198. Ядерний розпад.
- •199. Ланцюгова реакція.
- •200. Термоядерний синтез.
- •201. Термоядерний синтез.
- •202. Загальні відомості про елементарні частинки.
- •205. Динамічні методи дослідження сировини і матеріалів
146. Феромагнетики, парамагнетики та діамагнетики.
Діамагнетизм існує в усіх речовинах і пов’язаний з тим,що зовнішнє магнітне поле впливає на орбітальний рух електронів,внаслідок чого індуктується магнітний момент,направлений на зустріч магнітному полю.Після зняття зовнішнього магнітного поля індуктований магнітний момент діамагнетика зникає.
До діамагнітних речовин відносяться інертні гази,водень,мідь,цинк,свинець(речовини,що складаються з атомів повністю заповненими електронними оболонками).
Парамагнітні речовини відрізняються тим,що складаються з атомів з неповністю заповненими оболонками,тобто володіючих магнітними моментами.Але такі атоми знаходяться досить далеко один від одного і взаємодія між ними відсутня.
Феромагнітні речовини містять атоми,які володіють магнітним моментом(незаповнені електронні оболонки),але відстань між ними не така велика,як в парамагнетиках,в результаті чого між атомами виникає взаємодія,яка називається обмінною,(передбачається,що сусідні атоми обмінюються електронами).
Антиферомагнетиками називають матеріали,в яких під час обмінної взаємодії сусідніх атомів проходить антипаралельна орієнтація їх магнітних моментів.
До феромагнетиків відносяться речовини,в яких обмінна взаємодія здійснюється не небезпосередньо між магнітоактивними атомами,а через немагнітний іон кисню.
147. Принципи мас спектрометрії.
Мас-спектрометрія— метод визначення хімічного, фазового складу і молекулярної структури речовини, що базується на реєстрації спектра мас йонів, утворених внаслідок іонізації атомів і (або) молекул проби.
М.-с. належить до найбільш інформативних методів і відрізняється високими аналітичними характеристиками, дозволяє провести аналіз твердих, рідких і газоподібних речовин.
1.Ізотопний аналіз (вимірювання поширеності ізотопів різних елементів в земних і космічних об'єктах та їх варіацій) дозволяє:
встановлювати розповсюдженість радіогенних ізотопів;
визначати абсолютний вік порід, мінералів і рудних тіл;
вимірювати варіації розповсюдженості стабільних ізотопів в земній корі, її надрах і космічних об'єктах;
вивчати роль біосфери в процесах формування родов. горючих корисних копалин (вугілля, нафти і газу).
Молекулярний аналіз (аналіз складних сумішей органічних сполук і визначення їх структури) використовується для визначення складу органічних сполук у ґрунтах, реєстрації органічного забруднення вод, для вивчення складу нафт і їх фракцій з метою оптимізації процесів їх переробки.
Елементний аналіз дозволяє визначати склад домішок порід, мінералів і рудних утворень і дослідити розподіл елементів в мікрооб'ємах природних об'єктів, пов'язаний з магматичними і осадовими процесами.
148. Поведінка провідників у змінному полі.
Сам факт існування електричного струму засвідчує, що на електрично заряджені частинки в провіднику діє електричне поле. Існування такого поля підтверджується дослідами, а його походження пояснює теорія Максвелла. За цією теорією, в системі відліку, в якій спостерігається змінне магнітне поле, виявляється електричне поле. На відміну від електростатичного поля воно має деякі специфічні властивості. Оскільки воно діє на нерухомі електрично заряджені частинки, то назване електричним. Однак, це поле виконує роботу з переміщення заряджених частинок замкнутим контуром, тому воно не потенціальне. Його лінії напруженості замкнуті, тому його називають вихровим.
Лінії напруженості індукованого електричного поля охоплюють лінії індукції змінного магнітного поля і становлять з ними єдину систему. Напрямок ліній напруженості індукованого електричного поля можна визначити за правилом лівого гвинта .
Отже, в нерухомому замкнутому провіднику, який знаходиться в змінному магнітному полі, виникає ЕРС індукції.
Якщо напрямок поступального руху лівого гвинта збігається з напрямком зростання магнітної індукції поля, то його обертальний рух вказує напрямок ліній напруженості вихрового електричного поля .