
- •136. Магнітне поле.
- •137. Закон Біо-Савара-Лапласа
- •138. Напруженість та магнітна індукція. Сила Лоренца.
- •139. Магнітні поля колового та нескінченного струму.
- •140 Сила Ампера.
- •143. Потік магнітного поля. Закон електромагнітної індукції Фарадея.
- •144. Принцип дії електричного генератора змінного струму.
- •145. Класифікація матеріалів за магнітними властивостями.
- •146. Феромагнетики, парамагнетики та діамагнетики.
- •147. Принципи мас спектрометрії.
- •149. . Електричні прилади і їх використання.
- •150. Розширення меж використання електроприлпадів
- •151. Променева трубка. Принцип роботи осцилографа.
- •152. Умови виникнення періодичного руху.
- •153. Електричні коливання. Електричний коливальний контур.
- •154. . Згасаючі електричні коливання.
- •155. Активний та реактивний опори
- •156. . Коливальний контур.
- •158. Електромагнітні хвилі та їх взаємодія з речовиною.
- •159. Фігури Ліссажу.
- •160. . Вимушені колива ння. Явище резонансу
- •161. Відкритий коливальний контур.
- •162. Рівняння електромагнітної поля.
- •163. Принцип радіозв’язку. Модульований радіосигнал.
- •165. . Енергія світлової хвилі. Вектор Пойтінга.
- •168. .Фотометрія. Сила світла, освітленість, світимість - визначення та одиниці виміру.
- •169. . Геометрична оптика.
- •170. Тонка лінза. Оптична сила, фокусна відстань, фокальна площина тонкої лінзи.
- •171. Формула тонкої лінзи той, що збирає і той, що розсіюс.
- •172. Побудова оптичних зображень за допомогою тонкої лінзи
- •173. . Інтерференція світла і її умови
- •174. . Інтерференція світла від двох когерентних джерел.
- •176. Дисперсія світла. Дослідження Ньютона.
- •177. Дифракція світла. Дифракційна ґратка.
- •178. Елементи квантової фізики. Принцип невизначеності
- •180. Серії випромінювання, квантування енергії.
- •181. Потенціальна яма. Тунельний ефект.
- •182. Потенціальний бар’єр.
- •183. . Ефект Комптона.
- •184. Явище фотоефекту. Формула Ейнштейна для фотоефекту.
- •185. Закони Столєтова для фотоефекту.
- •186. Тиск світла
- •187. Хвилі де Бройля
- •188. . Співвідношення невизначеностей Гейзенберга
- •189. Рівняння Шредингера
- •190. Будова атома. Досліди Резерфорда.
- •191. Постулати Бора.
- •192. Серії випромінювання, квантування енергії.
- •193. Атомне ядро.
- •194. .Радіоактивність.
- •195. . Закон радіоактивного розпаду.
- •196. Радіоактивне випромінювання та взаємодія його з речовиною.
- •197. Взаємозв'язок маси та енергії матерії.
- •198. Ядерний розпад.
- •199. Ланцюгова реакція.
- •200. Термоядерний синтез.
- •201. Термоядерний синтез.
- •202. Загальні відомості про елементарні частинки.
- •205. Динамічні методи дослідження сировини і матеріалів
178. Елементи квантової фізики. Принцип невизначеності
До кінця 19-го сторіччя атом вважали неподільним. Однак відкриття цілого ряду нових фізичних явищ поставили це ствердження під сумнів. На початку 20-го сторіччя було висунуто кілька моделей будови атома. При допомозі цих моделей вчені пробували пояснити ряд незрозумілих експериментальних фактів - лінійність спектрів випромінювання газів при високій температурі, електричну нейтральність і стійкість атомів. Першу спробу побудувати теорію будови атома в межах класичної фізики зробив у 1903 р. англійський фізик Д.Томсон. За гіпотезою Томсона атом уявлявся у вигляді сфери, яка рівномірно заповнена позитивним зарядом, в середині якої містяться електрони. Проте ця модель була неспроможна пояснити спектральні закономірності атомів. За цією гіпотезою число ліній у спектрі не повинно було перевищувати число електронів в атомі, тоді як в дійсності навіть у спектрі атома водню число ліній перевищувало 30. Резерфорду описати ядерну модель атома в центрі атома міститься позитивно заряджене ядро атома, розміри якого мають величину порядку 10-15м, навколо ядра по замкнутих орбітах в об ємі сфери радіусом порядку 10-10м обертаються електрони, причому їх кількість дорівнює порядковому номеру елемента. В такому вигляді ядерна модель атома зберегла своє значення і до нашого часу, хоч і зазнала багатьох уточнень. На кожний рухомий електрон в атомі діє доцентрова сила ядра, яка дорівнює кулонівській силі притягання електрона до ядра. Ця сила забезпечує стійкий орбітальний рух електрона в атомі, подібно орбітальному руху планет в сонячній системі. Однак планетарна модель атома незабаром виявилась неприйнятною. Дійсно, електрони рухаючись в атомі з доцентровими прискореннями, згідно теорії Максвелла повинні випромінювати енергію у вигляді електромагнітних хвиль, що робить атоми не стійкими. Насправді атоми досить стійкі і при невисоких температурах енергії не випромінюють і не поглинають. В той же час при високих температурах будь-які атоми, перебуваючи у газоподібному стані, випромінюють електромагнітні хвилі у вигляді лінійчатих спектрів. Вихід із затруднень знайшов датський фізик Нільс Бор. В основу нової моделі атома була покладена планетарна модель Резерфорда. Бор висунув припущення, що рух електронів в атомі, випромінювання і поглинання атомами електромагнітних хвиль підпорядковуються не класичним законам, а квантовим. Ці закони Бор сформулював у вигляді наступних постулатів 1Електрони, які рухаються в атомі на окремих стаціонарних рівнях, не випромінюють і не поглинають електромагнітних хвиль. В стаціонарних станах атома електрони рухаються вздовж колових орбіт, які мають дискретні значення моменту імпульсу. murn n , 1.1 де m - маса електрона u - rn - n n 2p h 2p . 2. При переході електрона з однієї стаціонарної орбіти на іншу випромінюється або поглинається квант енергії hn En2 - En1 , 1.2 який дорівнює різниці енергій двох стаціонарних рівнів атома . Зміст формули 1.2 має принципове значення. Він виражає два нових фундаментальних ствердження а енергетичний cспектр атома дискретний б частоти атомного випромінювання пов язані з атомними рівнями.
На початку 1927 року практично одночасно відбулися дві важливі події. Гейзен-берг здогадався, що поняття "хвиля" и "частинка" стосовно квантових об'єктів можна застосовувати строго тільки порізно й виразив цей здогад кількісно у вигляді співвідношення невизначеностей. Бор запропонував загальний принцип додатковості, окремим випадком якого було співвідношення невизначеностей Гейзенберга..Аналізуючи можливості вимірювання координати й імпульсу квантового об'єкта (наприклад, електрона), Гейзенберг стверджував: неможливо одночасно і до того ж точно виміряти координату й імпульс. Беручи до уваги формулу де Бройля
це
означає: не можна одночасно й у той же
час точно визначити положення х атомного
об'єкта й довжину його хвилі X. Отже,
одночасне використання понять "частинка"
й "хвиля" є обмеженим. Чисельно
таке обмеження виражає нерівність —
співвідношення невизначеностей:
.
Обмеження, які встановлює співвідношення
невизначеностей, є незмінним законом
природи і ніяк не пов'язані з недосконалістю
наших приладів.Елементи
квантової фізики. Принцип невизначеності.
Ква́нтова меха́ніка — фундаментальна фізична теорія, що в описі мікроскопічних об'єктів розширює, уточнює і поєднує результати класичної механіки і класичної електродинаміки. Ця теорія є базою для фізики твердого тіла, квантову хімію та фізику елементарних частинок. Термін «квантова» пов'язаний з дискретними порціями, які теорія присвоює певним фізичним величинам, наприклад, енергії електромагнітної хвилі.
Принцип невизначеності є фундаментальним положенням квантової механіки, яке стверджує, що принципово неможливо одночасно виміряти з довільною точністю координати та імпульси квантового об'єкта. Це твердження справедливе не тільки щодо вимірювання, а й до теоретичної побудови квантового стану системи. Неможливо побудувати такий квантовий стан, в якому система одночасно характеризувалася б точними значеннями координати та імпульсу. Принцип невизначеності був сформульований у 1927 німецьким фізиком Вернером Гейзенбергом.
179. Взаємодія світла з речовиною. Поглинання та випромінювання
Взаємодія речовинита світла в середовищі за класичною теорією відбувається так: падаюче випромінювання збуджує атоми середовища, викликаючи вторинне вимушене випромінювання осциляторів атома, якими є валентні (зовнішні) електрони. Ці електрони ще називаються оптичними. Вторинне випромінювання оптичних електронів когерентне між собою і з первинним випромінюванням. При накладанні вони інтерферують, утворюючи прохідну хвилю, яка розповсюджується в напрямку первинної, а її фазова швидкість залежить від частоти, яка може бути як більше так і менше величини фазової швидкості первинної. При проходженні світла в оптично неоднорідному середовищі виникає розсіювання світла, як результат накладання первинного та вторинного випромінювань.
Поглинання світла
При проходженні світла через середовище частина його енергії переходить у внутрішню енергію (нагрівання тіла), або енергію вторинного випромінювання (фотолюмінісценція), що має інший спектральний склад. Це явище називається поглинанням світла і воно описується законом Бугера-Ламберта
Розсіювання світла
Явище зміни напрямку поширення світла у середовищі називається розсіюванням світла. Це явище виникає при збудженні дипольних моментів оптичних електронів атомів, молекул або іонів оптично неоднорідних середовищ падаючим випромінюванням.
Розсіювання в каламутних середовищах на частинках, розміри яких менше довжини хвилі l, називається розсіюванням Тиндаля. При проходженні через певну товщу такої речовини в спектрі розсіювання переважає довгохвильова складова і речовина здається червонуватою.
Постулати Бора — сформульовані данським фізиком Нільсом Бором основні положення будови атома, що враховують квантований характер енергії, випромінюваної електронами.
1. Атомна система може перебувати тільки в особливих стаціонарних, або квантових станах, кожному з яких відповідає певна енергія En. У стаціонарному стані атом енергію не випромінює.
2. У стаціонарному стані атома електрон, рухаючись по круговій орбіті із прискоренням, не випромінює світла, повинен мати дискретні (квантовані) значення моменту імпульсу
3. Перехід атома з одного стаціонарного стану в інший супроводжується випромінюванням чи поглинанням фотонів, енергію яких hν визначають за формулою:
hνkn = Ek − En,
де k і n - цілі числа (номери стаціонарних станів), якщо Ek > En фотон з частотою νkn випромінюється, якщо Ek < En - поглинається.
Поглинаючи світло, атом переходить із стаціонарного стану з меншою енергією в стаціонарний стан з більшою енергією. Усі стаціонарні стани, крім одного, є умовно стаціонарними. Нескінченно довго кожен атом може знаходитись лише в стаціонарному стані з мінімальним запасом енергії. Цей стан атома називається основним, всі інші - збудженими.
Виходячи з постулатів Бора, можна пояснити процес поглинання і випромінювання енергії атомами. Якщо атом поглинає енергію, то при цьому він переходить у збуджений стан. Його електрон може підніматися на вищу орбіту. Якщо існують вакансії для електрона ближче до ядра, то з часом електрон займає їх, переходячи на більш низький енергетичний рівень. Енергія, яка при цьому вивільняється, випромінюється атомом у вигляді кванта світла.