
- •С.В. Шапиро Курс физики Учебное пособие
- •Рецензенты:
- •Содержание
- •Раздел 1. Механика……………………………………...……….………………..8
- •Раздел 2. Термодинамика..……………………………………………………...45
- •Раздел 3. Электричество и магнетизм………………………………………...86
- •Раздел 5. Физические основы строения материи…………………………..175
- •Цель и задачи курса
- •Раздел первый. Механика глава первая. Кинематика
- •1.1. Материальная точка и основные характеристики ее движения
- •Декартовой системе координат
- •1.2. Вращательное движение материальной точки
- •Векторное изображение угловой скорости (б)
- •1.3. Кинематика твердого тела. Разложение произвольного движения на поступательное и вращательное
- •1.4. Относительное движение
- •1.5. Релятивистские эффекты в кинематике
- •Масштаба длины (в)
- •Вопросы по первой главе:
- •Глава вторая. Динамика
- •2.1. Взаимодействие материальных точек. Понятие силы
- •2.2. Законы статики изолированного множества материальных точек
- •1 Закон статики.
- •2 Закон статики.
- •2.3. Закон сохранения импульса изолированного множества материальных точек. Центр масс
- •2.4. Закон сохранения момента импульса изолированного множества материальных точек. Теорема Штейнера
- •2.5. Работа, энергия, закон сохранения энергии
- •Материальной точки Mq: а, б – под действием одной материальной точки Mp;
- •2.6. Взаимодействие двух изолированных множеств материальных точек
- •2.7. Связи абсолютно-твердых тел
- •2.8. Релятивистская масса
- •2.9. Гравитационное взаимодействие
- •2.10. Динамика упругого тела
- •Вопросы по второй главе:
- •Раздел II. Термодинамика глава третья. Идеальный газ
- •3.1. Основные характеристики идеального газа
- •Движением всех корпускул, входящих в газ (а), их упорядоченным движением (б) и в промежуточной ситуации (в)
- •3.2. Уравнение состояния Менделеева–Клапейрона
- •3.3. Работа идеального газа. Теплота и внутренняя тепловая энергия. Первый закон термодинамики
- •3.4. Энтропия. Второй принцип термодинамики
- •Аналогично для второго газа записываем
- •Если принять отношения
- •3.5. Адиабатические, изотермические, изохорические, изобарические процессы
- •3.6. Неравновесные системы
- •При теплообмене: 1 – источник тепловой энергии; 2 – приемник тепловой энергии (холодильник); 0 – объем идеального газа (открытая система)
- •Риc. 3.7. К раcчёту процесса преобразования теплового движения в упорядоченное в простейшей неравновесной системе
- •3.7. Цикл Карно
- •3.8. Распределение молекул газа по скоростям
- •Вопросы по третьей главе:
- •Глава четвёртая. Реальный газ и основы кинетики газа
- •4.1. Уравнение Ван дер-Ваальса
- •4.2. Столкновения молекул. Средняя длина свободного пробега. Скорость дрейфа
- •При столкновении корпускул идеального газа
- •Модель движения материальной точки под действием постоянной силы в условиях дескретно – повторяющегося столкновения с препятствиями (б) и зависимость V(τ) для такого движения
- •4.3. Явления переноса в газе
- •4.4. Диффузия газов
- •4.5. Теплопроводность
- •4.6. Внутреннее трение в газах (вязкость)
- •4.7. Основы аэро- и гидродинамики. Возникновение вихрей
- •В сплошной среде (б, в)
- •Вопросы по четвертой главе:
- •Раздел третий. Электричество и магнетизм глава пятая. Электростатика
- •5.1. Закон Кулона
- •Электрического взаимодействия; б – воздействие (n-1) зарядов на заряд qN;
- •5.2. Электрическое поле и его основные характеристики
- •И эквипотенциальными поверхностями (а) и поток вектора напряженности через инфинитезимальную поверхность (б)
- •5.3. Теорема Гаусса–Остроградского
- •5.4. Примеры применения теоремы Гаусса–Остроградского
- •Бесконечной длины: а – выбор замкнутой поверхности;
- •5.5. Электростатическое поле в диэлектрике
- •5.6. Электростатическая индукция. Теорема Гаусса-Остроградского для поля в разнородной среде
- •В разнородной среде
- •5.7. Энергия электростатического поля
- •Вопросы по пятой главе:
- •Глава шестая. Магнетизм
- •6.1. Взаимодействие движущихся зарядов и проводников с токами
- •С движущимися электронами; б – иллюстрация закона Био-Савара-Лапласа
- •6.2. Основные характеристики магнитного поля.
- •6.3. Закон полного тока
- •Магнитное поле торроидальной катушки
- •6.5. Электромагнитная индукция
- •Наводимого электромагнитной индукцией потока
- •6.6. Пара-, диа- и ферромагнетики
- •6.7. Явление взаимоиндукции. Идеальный трансформатор
- •Его схематическое изображение (б)
- •6.8. Энергия магнитного поля
- •Вопросы по шестой главе:
- •Глава седьмая. Электрический ток
- •7.1. Основные элементы цепи постоянного тока. Законы Ома и Джоуля–Ленца
- •7.2. Законы Кирхгофа для разветвленной цепи
- •(К описанию законов Кирхгофа)
- •7.3. Переменный синусоидальный ток
- •Векторами: а – единичный вектор во вращающейся системе координат;
- •7.4. Переменная синусоидальная эдс. Законы Ома и Кирхгофа в комплексном виде
- •И участок цепи синусоидального тока (в)
- •7.5. Переходные процессы в электрических цепях
- •Вопросы по седьмой главе:
- •Глава восьмая. Электромагнитное поле
- •8.1. Уравнения Максвелла
- •8.2. Теорема Умова–Пойнтинга
- •Двухпроводной линии (а) и круглого провода (б)
- •8.3. Плоское электромагнитное поле в диэлектрике
- •Плоской электромагнитной волны в диэлектрике
- •П(х); г – формирование е0(х)
- •8.4. Плоское синусоидальное электромагнитное поле в диэлектрике
- •8.5. Плоская электромагнитная волна в проводящей среде
- •8.6. Плоское синусоидальное электромагнитное поле в смешанной среде
- •8.7. Сферическое электромагнитное поле в диэлектрике
- •Вопросы по восьмой главе:
- •Для выбора основных цветов:1 – красный;2 – зелёный;3 – синий
- •9.2. Интерференция света
- •Монохроматических волн; в – интерференция сферических волн
- •Предмета на фотоплёнку при облучении его лазером (монохроматическим когерентным светом;б)получение объёмного (стереоскопического) изображения этого предмета
- •9.3. Дифракция света
- •9.4. Отражение и преломление волн на границе двух сред
- •9.5. Геометрическая оптика
- •Вопросы по девятой главе:
- •Глава десятая. Акустика
- •10.1. Акустические волны в газе. Волновое уравнение
- •10.2. Поперечные упругие колебания протяжённых твердых тел и поверхностей жидкостей
- •10.3. Распространение гармонического звука в газе
- •10.4. Негармонические звуковые колебания
- •Вопросы по десятой главе:
- •Раздел пятый. Физические основы строения материи глава одиннадцатая. Элементы квантовой механики
- •1.1. Принцип неопределенности
- •11.2. Волна вероятности. Уравнение Шредингера
- •Вероятность её нахождения вдоль оси X(б)
- •11.3. Волна вероятности ускоряющейся частицы. Волновой пакет
- •При ускорении частицы (а) и его структура (б)
- •11.4. Движение электрического заряда в центрально-симметричном электрическом поле
- •А) при числе эпициклов,равном 1; б) при числе 2
- •Вопросы по одиннадцатой главе:
- •Глава двенадцатая. Физические основы строения материи
- •12.1. Элементарные частицы
- •Камере в результате столкновения π ––мезона с протоном р(а). В результате реакции появились k0 – мезон и λ0 – гиперон.Они на фотографии
- •12.2. Модели ядра
- •12.3. Ядерные процессы
- •12.4. Структура атома. Энергетические уровни
- •12.5. Некоторые физические явления, обусловленные квантовыми процессами в атомах
- •12.6. Формирование молекулярных структур
- •Атомов от расстояния между их центрами
- •12.7. Агрегатные состояния вещества
- •12.8. Твердое тело
- •Двух молекул от расстояния между ними
- •В кристаллах
- •Вопросы по двенадцатой главе:
- •Приложения
- •Примеры решения задач Несколько советов
- •Несколько предварительных замечаний
- •1. Кинематика.
- •2. Статика Задача № п.2
- •Решение
- •3. Динамика Задача № п.3
- •Решение
- •4. Термодинамика Задача№ п.4
- •Решение
- •5. Электростатика Задача № п.5
- •Решение
- •6. Магнитное поле Задача № п.6
- •Решение
- •7. Электрический ток Задача № п.7
- •Решение
- •8. Переменное электромагнитное поле Задача № п.8
- •Решение
- •9. Акустика Задача № п.9
- •Решение
- •10. Оптика Задача № п.10
- •Решение
- •11. Атомная и ядерная физика Задача № п.11
- •Решение
- •12. Молекулы и кристаллы Задача № п.12
- •Решение
- •Некоторые сведения из векторного анализа
- •Международная система единиц
- •3.1. Основные единицы и их эталоны
- •3.2. Единицы механических величин
- •П.3.3. Единицы тепловых величин
- •3.4. Единицы электромагнитных величин.
- •3.5. Единицы электромагнитного излучения и освещенности
- •Основные хронологические даты истории физики
- •Приложение 5 основные физические константы
- •Список литературы
- •Шапиро Семен Валентинович
- •450078, Г. Уфа, ул. Чернышевского, 145, к. 206; тел. (347) 241-69-85.
А) при числе эпициклов,равном 1; б) при числе 2
Рис. 11.6. Поворот плоскости орбиты заряда m: а) вид орбиты этого заряда
при повороте вокруг оси y на угол β; б) вид «сверху» на эти повороты
Возможность поворота плоскости вращения вокруг оси y увеличивает число вариантов выбора числа эпициклов – его можно было принять дробным на один дифферент, лишь бы на общее их число при поворотах вокруг оси y было целым. Иными словами, максимальное число kα не должно лишь превышать kβ.
Ясно, что все орбиты заряда m отличаются друг от друга цедым числом эпициклов.Для того, чтобы установить,как при этом различаются радиусы орбит r0,кинетическая, потенциальная и общая энергия заряда, определим момент его импульса по эпициклу.
На рис.11.7 дано увеличенное изображение эпицикла. При движении заряда от точки 1 до точки 2 его действие d относительно центра М изменится на величину:
d=mΔvr Δr =m(vэ - 0)(ρ – 0)=mvэρ=Lэ (11.11,а)
где Lэ – момент импульса заряда m.
Далее, при лвижении заряда m от точки 2 до точки 3 действие меняется на величину:
m(0 – vэ)(ρ – 0)= – mvэ ρ = –Lэ.
Рис. 11.7. К определению момента количества движения заряда m
Нетрудно заметить, что при перемещении заряда от точки 1 до точки 3 его действие сначала возрастает от 0 до Lэ, азатем уменьшается до нуля.Далее, при двидении этого заряда от точки 3 до 1 такое изменение действия, как нетрудно проверить, повторяется. Поскольку, как отмечалось выше, заряд то входит в «поле зрения» центра М, то исчезает, максимальное значение действия d, а, следовательно, и момента импульса Lэ равно постоянной Планка h:
Lэ =h, (11.11,б)
В силу закона сохранения момента импульса, при переходе от орбиты, содержащей максимальное число n эпициклов к орбите с числом (n+1) эпицикл момент импульса движения заряда m по дифференту возрастёт на h (как видно на рисунке 11.7, поворот заряда по дифференту направлен в сторону, противоположную его вращению по эпициклу). Следовательно, момент орбитального импульса при (n+1) эпициклах отличается от момента импульса при n эпициклах на величину h:
mvn+1rn+1 –mvnrn =h.
Следовательно, момент орбитального импульса заряда m равен целому числу h:
mvr =nh. (11.11,в)
Согласно (11.10,б и в) получаем дискретные значения r,WΣ:
r =4πε0 h2 n2/mq1q2; WΣ = h2n2/2mr; (11.11,г)
Число n называется радиальным квантовым числом.Судя по сказанному выше, это число обязательно должно быть больше kα.max или,что тоже самое, kβ:
kβ < n. (11.11,д)
Всё сказанное выше о траектории движения заряда m справедливо только при условии, что точно известна точка начала движения заряда y0 (см. рис. 11.3,а). Однако, в силу принципа неопределённости, заряд может начать двигаться в любой другой точке. Поэтому точной траектории движения заряда m установить нельзя. Но все другие характеристики, выведенные выше, распространяются на все эти траектории. В частности ,
| kα| ≤ kβ < n (11.12)
Те же самые соотношения можно получить,воспользовашись математическим формализмом, основанным на уравнеиии Шредингера (11.3,в).Для этого нужно, преобразовать его к сферическим координатам (см. рис.11.6,а).
(11.13,а)
Согласно [5] в сферических координатах (r, α, β):
(11.13,б)
где
(11.13,в)
Несмотря
на кажущуюся сложность записи
,
решение уравнения (11.13,а) с учетом
(11.13,б,в) ищется в достаточно простом
виде :
(11.13,г)
где А - нормировочный коэффициент, Ψr, Ψβ и Ψα, - функции соответственно только от r, и β, α. Подставляя (11.13,б,в,г) в (11.13,а), получаем
(11.13,д)
Из (11.13,д) следует, что уравнение Шредингера в сферических координатах превратилось в три независимых друг от друга уравнения от α, β, r :
(11.14,а)
(11.14,б,в)
Столь
сложная запись постоянных
и
в
правой части выражений (11.14,б и в) связана
с удобством их дальнейшего использования.
Выражение (11.14,в) можно записать в виде
обычного волнового уравнения:
решение, которого имеет вид:
(11.14,г)
Из требования однозначности решения вытекает то обстоятельство, что -целое число (Κα=0,±1;±2;…), именуемое магнитным квантовым числом [11]. Амплитуда Ψαm вычисляется, исходя из обычного требования (см.§ 11.2) равенства единице интеграла Ψ 2 по всем значениям α:
═>
Выражение (11.14,б) с учетом (11.14,г) имеет вид:
откуда получаем
(11.14,д)
где
является
присоединенной функцией Лежандра[5].
Амплитуда Ψβm
вычисляется также, как и Ψαm
, исходя из условия, что интеграл
при изменении β
в пределах от 0
до π
равен
единице. Опуская промежуточные выкладки,
получаем [11]:
(11.14,е)
Из теории сферических функций [5] следует, что - целое положительное число ( =0,1,2,…), а
(11.14,ж)
Величина именуется азимутальным квантовым числом.
И, наконец, для определения зависимости распределении вероятности нахождении точки m от радиуса r преобразуем выражение (11.14,а):
Это уравнение также решается с применением сферических функций [5]. В данном случае используются полиномы Лагерра
где
(11.14,з)
После довольно громоздких, но непринципиальных промежуточных выкладок получаем
(11.14,и)
где n целое число, именуемое радиальным квантовым числом, иногда – главным квантовым числом (n=1,2,…, Kβ=0,1,…, n -1).
Как видим, у функции
несколько кратных n
решений.
Каждому из этих решений соответствует
свое дискретное значение суммарной
энергии
(11.15)
В том случае, когда
отличается от какого-либо из этих
значений, частица m
излучает
в виде электромагнитной волны избыток
энергии до ближайшего меньшего по
формуле (11.15). После этого она оказывается
«размазанной» в пространстве в
соответствии с значениями Ψα,
Ψβ
и Ψr.
О том, как
двигается
частица m
в пределах соответствующего участка
пространства, точно сказать невозможно.
Скорее всего, это хаотическое блуждание,
в результате которого образуется облако
с распределенной внутри него массой и
зарядом.