Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
микроба.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
414.2 Кб
Скачать

9. Генетические рекомбинации у бактерий

Заключительным этапом при любой форме обмена генетическим материалом является рекомбинация между привнесенной ДНК и хромосомой клетки-реципиента. Если переносится одна нить ДНК, то она вначале достраивается комплементарной ей нитью; рекомбинируют между собой только двунитевые ДНК. Различают общую рекомбинацию, сайт-специфическую рекомбинацию и рекомбинацию, контролируемую транспонируемыми элементами.

Общая рекомбинация происходит между гомологичными ДНК. Сайт-специфическая рекомбинация происходит за счет наличия специфических участков у рекомбинируемых молекул ДНК. Ее примером является специфическая рекомбинация между умеренным фагом X и хромосомой Е. coli. Как в бактериальной хромосоме, так и в ДНК фага X имеются специфические участки (attB и attP соответственно), между которыми и происходит сайт-специфическая рекомбинация. Общая и сайт-специфическая рекомбинация контролируется геном гесА.

Рекомбинации, осуществляемые транспонируемыми элементами, тоже являются сайт-специфическими, но специфичность этих сайтов связана с особыми нуклеотидными последовательностями, и эта форма рекомбинации не зависит от гесА-гена.

Главным генетическим детерминантом всех путей рекомбинации является ген гесА. Его повреждение полностью исключает возможность образования рекомбинантов. Основной способ recA-рекомбинации осуществляется с участием продуктов генов гесВ и гесС (они кодируют синтез эндонуклеазы V). Таким образом, генетический контроль рекомбинаций носит сложный характер.

Изучение его механизма — одна из центральных задач молекулярной генетики. Особый интерес представляет изучение механизма гомологической рекомбинации. Это определяется перспективами развития молекулярной медицины. Одной из важнейших стратегических задач, поставленных перед программой «Геном человека», является обнаружение изменений первичной структуры ДНК, которые приводят к нарушению функции генов и, как следствие этого, к развитию наследственных заболеваний человека.

Идеальным методом лечения их является генотерапия, основанная на замене поврежденного («больного») гена здоровым. Такая замена может быть осуществлена только с помощью гомологической рекомбинации, механизмы которой у бактерий и эукариот, очевидно, во многом сходны. У бактерий выявлены два способа такой рекомбинации, осуществляемых двумя типами рекомбиназ: АТФ-зависимым белком RecA и АТФ-независимой ренатуразой. Соответственно, и у эукариот обнаружены АТФ-зависимые и АТФ-независимые ДНК-трансферазы, среди которых найдены белки, функционально сходные с RecA-белком бактерий.

10. Споры и спорообразование прокариот

Образование эндоспор - процесс, имеющий место только в мире прокариот. Бактериальные эндоспоры - это особый тип покоящихся клеток грамположительных эубактерий, формирующихся эндогенно, т.е. внутри цитоплазмы "материнской" клетки ( спорангия ), обладающих специфическими структурами (многослойными белковыми покровами, наружной и внутренней мембранами, кортексом ) и устойчивостью к высоким температурам и дозам радиации, летальным в норме для вегетативных клеток ( рис. 22 , Г). Эндоспорам свойственно также и особое физическое состояние протопласта .

К спорообразующим относится большое число эубактерий приблизительно из 15 родов, характеризующихся морфологическим и физиологическим разнообразием ( табл. 7 ). Среди них имеются палочковидные, сферические, мицелиальные формы, спириллы и нитчатые организмы. Все они имеют строение клеточной стенки, характерное для таковой грамположительных эубактерий. Ни в одном случае не выявлена наружная липополисахаридная мембрана, несмотря на то, что многие роды и виды спорообразующих бактерий не окрашиваются по Граму . По типу питания среди них обнаруженыхемоорганогетеротрофы , факультативные хемолитоавтотрофы и паразитические формы.

Отношение к кислороду также разнообразно: часть спорообразующих форм представлена аэробами и факультативными анаэробами , другая часть включает облигатных анаэробов - от аэротолерантных форм до высокочувствительных к О2.

Лучше всего процесс спорообразования изучен у представителей родов Bacillus и Clostridium , хотя имеющиеся данные позволяют сделать вывод о принципиальной однотипности этого процесса у всех видов, образующих эндоспоры. В каждой бактериальной клетке, как правило, формируется одна эндоспора. (Описана анаэробная бактерия, образующая в клетке до 3-5 эндоспор).

Первым шагом к спорообразованию является изменение морфологии ядерного вещества вегетативной клетки, образующего тяж вдоль длинной оси спорулирующей клетки ( рис. 23 ). Приблизительно одна треть тяжа затем отделяется и переходит в формирующуюся спору. У некоторых видов ядерный тяж образуется только на одном полюсе клетки, в его формировании участвует не весь генетический материал вегетативной клетки, и впоследствии ядерный тяж целиком переходит в формирующуюся спору. Биологический смысл формирования ядерного тяжа до сих пор остается невыясненным.

Формирование споры начинается с того, что у одного из полюсов клетки происходит уплотнениецитоплазмы , которая вместе с генетическим материалом, представляющим собой одну или несколько полностью реплицированных хромосом, обособляется от остального клеточного содержимого с помощью перегородки. Последняя формируется впячиванием внутрь клетки ЦПМ . Мембрана нарастает от периферии к центру, где срастается, что приводит к образованию споровой перегородки. Эта стадия формирования споры напоминает клеточное деление путем образования поперечной перегородки (см.рис. 20 , А). Следующий этап формирования споры - "обрастание" отсеченного участка клеточной цитоплазмы с ядерным материалом мембраной вегетативной клетки, конечным результатом которого является образование проспоры - структуры, расположенной внутри материнской клетки и полностью отделенной от нее двумя элементарными мембранами: наружной и внутренней по отношению к проспоре.

Описанные выше этапы формирования споры (вплоть до образования проспоры) обратимы. Оказалось, что если к спорулирующей культуре добавить антибиотик хлорамфеникол (ингибитор белкового синтеза и, следовательно, ингибитор синтеза мембранных белков), то можно остановить "обрастание" клеточной мембраной отсеченного септой участка цитоплазмы, и процесс спорообразования превратится в процесс клеточного деления. (Между двумя мембранами септы откладывается материал клеточной стенки.) После образования проспоры дальнейшие этапы спорообразования уже необратимы.

Между наружным и внутренним мембранными слоями проспоры начинается формированиекортикального слоя (кортекса) . Затем поверх наружной мембраны проспоры синтезируются споровые покровы, состоящие из нескольких слоев, число, толщина и строение которых различны у разных видов спорообразующих бактерий. В формировании слоев споровых покровов принимает участие как наружная мембрана споры, так и протопласт материнской клетки.

У многих бактерий поверх покровов споры формируется еще одна структура - экзоспориум , строение которого различно в зависимости от вида бактерий. Часто экзоспориум многослойный, с характерной для каждого слоя тонкой структурой.

Все слои, окружающие протопласт эндоспоры, находятся внутри материнской клетки. На их долю приходится примерно половина сухого вещества споры.

После сформирования споры происходит разрушение (лизис) "материнской" клеточной стенки и спора выходит в среду.

Спорообразование сопровождается активным синтезом белка. Белки эндоспор в отличие от белков вегетативных клеток богаты цистеином и гидрофобными аминокислотами, с чем связывают устойчивость спор к действию неблагоприятных факторов. Содержание ДНК в споре несколько ниже, чем в исходной вегетативной клетке, поскольку в спору переходит лишь часть генетического материала материнской клетки. Генетический материал поступает в спору в виде полностью реплицированных молекул ДНК. Споры некоторых видов содержат по 2 или 3 копии хромосомы. Содержание РНК в спорах ниже, чем в вегетативных клетках, и РНК в значительной степени при спорообразовании синтезируется заново.

Одним из характерных процессов, сопровождающих образование эндоспор, является накопление в нихдипиколиновой кислоты и ионов кальция в эквимолярных количествах. Эти соединения образуют комплекс, локализованный в сердцевине споры. Помимо Са2+ в эндоспорах обнаружено повышенное содержание других катионов (Mg2+, Mn2+, К+), с которыми связывают пребывание спор в состоянии покоя и их термоустойчивость.

Существенные отличия эндоспор от вегетативных клеток выявляются при изучении химического состава отдельных споровых структур. Экзоспориум состоит из липидов и белков и, вероятно, выполняет функцию дополнительного барьера, защищающего спору от внешних воздействий, а также регулирующего проникновение в нее различных веществ. Однако никаких данных, подтверждающих эти предположения, пока нет. Механическое удаление экзоспориума не приводит к какому-либо повреждению спор. Они обнаруживают такую же способность к прорастанию, как и споры с неудаленным экзоспориумом.

Споровые покровы в основном состоят из белков и в небольшом количестве из липидов и гликолипидов. Белки покровов обладают высокой устойчивостью к неблагоприятным условиям и обеспечивают спорам защиту от действия литических ферментов, других повреждающих факторов, а также предохраняют спору от преждевременного прорастания. Оказалось, что споры мутантов, лишенные покровов, прорастают сразу же после выхода из материнской клетки, даже если условия для последующего роста неблагоприятны.

Кортекс построен в основном из молекул особого типа пептидогликана . При прорастании споры из части кортекса, прилегающей к внутренней споровой мембране, формируется клеточная стенка вегетативной клетки.

В отличие от эндоспор, образующихся внутри материнской клетки и окруженных двумя элементарными мембранами, экзоспоры бактерий из рода Methylosinus и Rhodomicrobium формируются в результате отпочкования от одного из полюсов материнской клетки. Образование экзоспор сопровождается уплотнением и утолщением клеточной стенки. У экзоспор отсутствуют дипиколиновая кислота и характерные для эндоспор структуры (кортекс, экзоспориум).

К другим покоящимся формам бактерий относятся цисты, экзоспоры,

миксоспоры. Как и эндоспоры, все эти покоящиеся формы предназначе-

ны для перенесения бактериями неблагоприятных условий. Экзоспоры

возникают путем почкования материнской клетки. Они сходны по своим

свойствам с эндоспорами бацилл. Образование экзоспор характерно для

метанокисляющих бактерий. Цисты – это шарообразные толстостенные

клетки, формирование которых характерно для бактерий рода Azotobacter.

В цисту превращается вся вегетативная клетка. Миксоспоры образу-

ются также путем превращения всей клетки. Формирование миксоспор

характерно для бактерий рода Myxococcus.

11. Под питанием понимают процессы поступления и выведения питательных веществ в клетку и из клетки. Питание в первую очередь обеспечивает размножение и метаболизм клетки.

Среди необходимых питательных веществ выделяют органогены – это восемь химических элементов, концентрация которых в бактериальной клетке превосходит 10—4 моль. К ним относят углерод, кислород, водород, азот, фосфор, калий, магний, кальций.

Кроме органогенов, необходимы микроэлементы. Они обеспечивают активность ферментов. Это цинк, марганец, молибден, кобальт, медь, никель, вольфрам, натрий, хлор.

Для бактерий характерно многообразие источников получения питательных веществ.

В зависимости от источника получения углерода бактерии делят на:

1) аутотрофы (используют неорганические вещества – СО2);

2) гетеротрофы;

3) метатрофы (используют органические вещества неживой природы);

4) паратрофы (используют органические вещества живой природы).

Процессы питания должны обеспечивать энергетические потребности бактериальной клетки.

По источникам энергии микроорганизмы делят на:

1) фототрофы (способны использовать солнечную энергию);

2) хемотрофы (получают энергию за счет окислительно-восстановительных реакций);

3) хемолитотрофы (используют неорганические соединения);

4) хемоорганотрофы (используют органические вещества).

Факторами роста бактерий являются витамины, аминокислоты, пуриновые и пиримидиновые основания, присутствие которых ускоряет рост.

Среди бактерий выделяют:

1) прототрофы (способны сами синтезировать необходимые вещества из низкоорганизованных);

2) ауксотрофы (являются мутантами прототрофов, потерявшими гены; ответственны за синтез некоторых веществ – витаминов, аминокислот, поэтому нуждаются в этих веществах в готовом виде).

Микроорганизмы ассимилируют питательные вещества в виде небольших молекул, поэтому белки, полисахариды и другие биополимеры могут служить источниками питания только после расщепления их экзоферментами до более простых соединений.

Метаболиты и ионы поступают в микробную клетку различными путями.

Пути поступления метаболитов и ионов в микробную клетку.

1. Пассивный транспорт (без энергетических затрат):

1) простая диффузия;

2) облегченная диффузия (по градиенту концентрации, с помощью белков-переносчиков).

2. Активный транспорт (с затратой энергии, против градиента концентрации; при этом происходит взаимодействие субстрата с белком-переносчиком на поверхности цитоплазматической мембраны).

Встречаются модифицированные варианты активного транспорта – перенос химических групп. В роли белков-переносчиков выступают фосфорилированные ферменты, поэтому субстрат переносится в фосфорилированной форме. Такой перенос химической группы называется транслокацией.

12. Брожение — это процесс, важный в анаэробных условиях, в отсутствие окислительного фосфорилирования. В ходе брожения, как и в ходе гликолиза, образуется АТФ. Во время брожения пируват преобразуется в различные вещества.

Хотя на последнем этапе брожения (превращения пирувата в конечные продукты брожения) не освобождается энергия, он крайне важен для анаэробной клетки, поскольку на этом этапе регенерируется никотинамидадениндинуклеотид (NAD+), который требуется для гликолиза. Это важно для нормальной жизнедеятельности клетки, поскольку гликолиз для многих организмов — единственный источник АТФ в анаэробных условиях.

В ходе брожения происходит частичное окисление субстратов, при котором водород переносится на NAD+ (никотинамидадениндинуклеотид). В ходе других этапов брожения его промежуточные продукты служат акцепторами водорода, входящего в состав NADH; в ходе регенерации NAD+ они восстанавливаются, а продукты восстановления выводятся из клетки.

Конечные продукты брожения содержат химическую энергию (они не полностью окислены), но считаются отходами, поскольку не могут быть подвергнуты дальнейшему метаболизму в отсутствие кислорода (или других высокоокисленных акцепторовэлектронов) и часто выводятся из клетки. Следствием этого является тот факт, что получение АТФ брожением менее эффективно, чем путём окислительного фосфорилирования, когда пируват полностью окисляется до двуокиси углерода. В ходе разных типов брожения на одну молекулу глюкозы получается от двух до четырёх молекул АТФ (ср. около 36 молекул путём аэробного дыхания). Однако даже у позвоночных брожение (анаэробное окисление глюкозы) используется как эффективный способ получения энергии во время коротких периодов интенсивной мышечной работы, когда перенос кислорода к мышцам недостаточен для поддержания аэробного метаболизма. Брожение у позвоночных помогает во время коротких периодов интенсивной работы, но не предназначено для длительного использования. Например, у людей гликолиз с образованием молочной кислоты дает энергию на период от 30 секунд до 2 минут. Скорость генерации АТФ примерно в 100 раз больше, чем при окислительном фосфорилировании. Уровень pH в цитоплазме быстро падает, когда в мышце накапливается молочная кислота, в конечном итоге ингибируя ферменты, вовлеченные в процесс гликолиза.

Продукты реакции брожения[править | править исходный текст]

Продукты брожения — это по сути отходы, получившиеся во время превращения пирувата с целью регенерации NAD+ в отсутствие кислорода. Стандартные примеры продуктов брожения — этанол (винный спирт), молочная кислотаводород иуглекислый газ. Однако продукты брожения могут быть более экзотическими, такими как масляная кислотаацетонпропионовая кислота2,3-бутандиол и др.

Основные типы брожения[править | править исходный текст]

  • Спиртовое брожение[2](осуществляется дрожжами и некоторыми видами бактерий), в ходе него пируват расщепляется на этанол и диоксид углерода. Из одной молекулы глюкозы в результате получается две молекулы спирта (этанола) и две молекулы углекислого газа. Этот вид брожения очень важен в производстве хлебапивоварениивиноделии и винокурении[3]. Если в закваске высока концентрация пектина, может также производиться небольшое количество метанола. Обычно используется только один из продуктов; в производстве хлеба алкоголь улетучивается при выпечке, а в производстве алкоголя диоксид углерода обычно уходит в атмосферу, хотя в последнее время его стараются утилизировать.

  • Молочнокислое брожение, в ходе которого пируват восстанавливается до молочной кислоты, осуществляют молочнокислые бактерии и другие организмы. При сбраживании молока молочнокислые бактерии преобразуют лактозу в молочную кислоту, превращая молоко в кисломолочные продукты (йогуртпростокваша и др.); молочная кислота придаёт этим продуктам кисловатый вкус.

Молочнокислое брожение происходит также в мышцах животных, когда потребность в энергии выше, чем обеспечиваемая дыханием, и кровь не успевает доставлять кислород.

Обжигающие ощущения в мышцах во время тяжелых физических упражнений соотносятся с получением молочной кислоты и сдвигом к анаэробному гликолизу, поскольку кислород преобразуется в диоксид углерода аэробным гликолизом быстрее, чем организм восполняет запас кислорода; а болезненность в мышцах после физических упражнений вызвана микротравмами мышечных волокон. Организм переходит к этому менее эффективному, но более скоростному методу производства АТФ в условиях недостатка кислорода. Затем печень избавляется от излишнего лактата, преобразуя его обратно в важное промежуточное звено гликолиза — пируват.

Считается, что анаэробный гликолиз был первым источником энергии для общих предков всех живых организмов до того, как концентрация кислорода в атмосфере стала достаточно высокой, и поэтому эта форма генерации энергии в клетках — более древняя. За очень редкими исключениями она существует и у всех ныне живущих клеток.

  • Уксуснокислое брожение осуществляют многие бактерии. Уксус (уксусная кислота) — прямой результат бактериальной ферментации. При мариновании продуктов уксусная кислота предохраняет пищу от болезнетворных и вызывающих гниение бактерий.

  • Маслянокислое брожение приводит к образованию масляной кислоты; его возбудителями являются некоторые анаэробные бактерии рода Клостридиум.

Аэробное дыхание состоит из двух фаз. Первая фаза включает в себя серию реакций, благодаря которым органический субстрат окисляется до СO2, а освобождающиеся атомы водорода перемещаются к акцепторам. В этой фазе совершается цикл реакций, известный под названием цикла Кребса, или цикла трикарбоновых кислот (ЦТК). Вторая фаза представляет собой окисление освобождающихся атомов водорода кислородом с образованием АТФ. Обе фазы совместно ведут к окислению субстрата до СО2 и Н2О и образованию биологически полезной энергии (в виде АТФ и других соединений).

Кратко разберем цепь реакций при протекании цикла Кребса (рис. 22).

Первичный распад углевода здесь идет так же, как при брожении, но образовавшаяся пировиноградная кислота подвергается иным превращениям. При декарбоксилироваиии из нее образуется уксусный альдегид (или уксусная кислота), который соединяется с коферментом одного из окислительных ферментов — коферментом А (КоА—SH), образуя ацетилкофермент А. Под действием фермента цитратсинтетазы двууглеродный ацетил-КоА (СН 3СО—S—КоА) реагирует с молекулой щавелевоуксусной кислоты, содержащей четыре атома углерода, в результате чего полулается соединение с шестью атомами углерода — лимонная кислота:

Лимонная кислота под влиянием фермента аконитазы теряет молекулу воды и превращается в цис-аконитовую кислоту, которая под действием того же фермента присоединяет Н2О и превращается в изолимонную кислоту.

При воздействии изоцитратдегидрогеназы, активной группой которой является НАДФ, от изолимонной кислоты отщепляются два атома водорода, в результате чего она превращается в щавелевоянтарную кислоту, от которой, в свою очередь, под действием фермента декарбоксилазы отщепляется углекислый газ (СО2). В образовавшейся б - кетоглутаровой кислоте число атомов углерода становится равным пяти, б - кетоглутаровая кислота под влиянием ферментного комплекса б - кетоглутаратдегидрогеназы с активной группой НАД превращается в янтарную, теряя СО2 и два атома водорода. Затем следуют реакции окисления янтарной кислоты в фумаровую с помощью фермента сукцинатдегидрогеназы с активной группой ФАД, превращения фумаровой кислоты в яблочную при участии фумаратгидратазы (фумаразы) и окисления яблочной в щавелевоуксусную кислоту, катализируемого малатдегидрогеназой с активной группой НАД.

Эти превращения сопровождаются отщеплением двух пар атомов водорода. Щавелевоуксусная кислота взаимодействует с коферментом А, и цикл повторяется снова. Каждая из десяти реакций цикла трикарбоновых кислот (за исключением одной) легкообратима. Углеродные атомы ацетил-КоА освобождаются в виде двух молекул СО2. В реакциях ферментативного дегидрирования атомы водорода удаляются четырьмя разными дегидрогеназами. В трех из этих четырех реакций окисления атомы водорода присоединяются к НАД+ (или НАДФ+), и только в случае сукцинатдегидрогеназы они непосредственно переносятся на флавинадениидииуклеотид (ФАД). Кроме того, образуется одна молекула АТФ. В ходе описанных реакций в трансформируемые соединения может включаться вода. Ферменты ЦТК располагаются на внутренней стороне цитоплазматической мембраны или на мембранах мезосом микроорганизмов.

Суммарную реакцию цикла трикарбоновых кислот можно представить в виде следующего уравнения:

Отметим, что в цикле трикарбоновых кислот образуется также ряд промежуточных продуктов, играющих роль предшественников для реакции биосинтеза макромолекул микробной клетки. Поэтому большинство ферментов цикла Кребса имеется и у облигатных анаэробов (последние не имеют только фермента, катализирующего трансформацию б - кетоглутаровой кислоты в янтарную). В цикл Кребса вовлекаются и продукты катаболизма жирных кислот и некоторых аминокислот.

Следовательно, цикл трикарбоновых кислот имеет большое значение не только для дыхания, но и для биосинтеза. Это один из центральных механизмов, с помощью которого все источники углерода используются для синтеза необходимых для жизни микроорганизмов соединений. Собственно, в этом и заключается смысл цикла Кребса, дающего вещества, легко превращающиеся в аминокислоты, белки, жиры, углеводы и т. д., которые затем становятся частью структуры клетки.

У некоторых микроорганизмов, усваивающих простые источники углерода, например уксусную кислоту, имеется модифицированная форма ЦТК, известная под названием глиоксилатного цикла (открыт Корнбергом и Кребсом в 1957 г.).

При всех реакциях дегидрирования в цикле Кребса атомы водорода, отщепляемые специфическими дегидрогеназами, акцептируются коферментами НАД и НАДФ и затем переносятся по цепи переносчиков. Однако фактически происходит перенос не атомов водорода, а только электронов. Ядра атомов водорода, по-видимому, свободно перемещаются по растворителю в виде протонов. По этой причине цепь переносчиков часто называют цепью переноса электронов, или дыхательной цепью. Цепь переноса электронов содержит переносчики — молекулы трех различных групп, представляющие собой окислительно - восстановительные ферменты, такие как флавопротеиды, хиноны и цитохромы.

Флавопротеиды содержат в качестве простетических групп флавинадениндинуклеотид (ФАД) или флавинмононуклеотид (ФМН); они передают электроны от восстановленных пиридиновых нуклеотидов к последующим переносчикам дыхательной цепи. Хиноны (наиболее распространен убихинон или кофермент Q) представляют собой небелковые переносчики с небольшой молекулярной массой. Они являются промежуточными компонентами между флавопротеидами и цитохромами. Цитохромы содержат железопорфириновые простетические группы и напоминают гемоглобин и миоглобин. При переносе электронов цитохромами происходит обратимое окисление атома железа:

Электроны, отнятые от органического субстрата, переносятся последовательно через промежуточные переносчики — флавопротеид, убихинон (кофермент Q) и цитохромы, пока последний переносчик в восстановленном состоянии не прореагирует с молекулярным кислородом. Последняя реакция катализируется ферментом цитохромоксидазой. В итоге такого необратимого конечного окисления вся цепь переносчиков электронов переходит в окисленное состояние, а молекулярный кислород восстанавливается до Н2О.

При переносе электронов на отдельных участках дыхательной цепи выделяется значительное количество свободной энергии. Для того чтобы использовать освобождающуюся свободную энергию, в микробной клетке имеется механизм, объединяющий в единый процесс выделение энергии и образование богатых энергией фосфатных связей (АТФ). Этот процесс называется окислительным фосфорилированием.

Цепь переноса электронов при дыхании схематически изображена на рисунке 23.

Все аэробные и факультативно-анаэробные бактерии имеют дыхательную цепь, причем ферменты, катализирующие процессы переноса электронов в этой цепи и окислительного фосфорилирования, локализованы в цитоплазматической мембране и мезосомах.

Большинство анаэробных микроорганизмов не имеют цепи переноса электронов. Поэтому при наличии кислорода воздуха в среде происходит непосредственный транспорт водорода флавиновыми дегидрогеназами (ФАД) на кислород, что приводит к образованию перекиси водорода H2 O2 Перекись водорода чрезвычайно токсична и должна быть удалена, что могут осуществить два фермента — каталаза и супероксиддисмутаза, однако они у анаэробных бактерий отсутствуют. В связи с этим одна из причин токсического действия кислорода на анаэробные микроорганизмы заключается в образовании и аккумуляции перекиси водорода в их клетках в летальных дозах.

В результате окислительного фосфорилирования большая часть энергии пировиноградной кислоты становится доступной для микроорганизмов. Суммарно полное окисление глюкозы можно выразить следующим уравнением:

Рассмотрим выход энергии при дыхании. Определено, что полное окисление одного моля (180 г) глюкозы дает 38 молекул АТФ. Каждая связь АТФ равпа приблизительно 3,4• 104 Дж, а 38 молекул АТФ дают 12,9-105 Дж. При сжигании одного моля глюкозы в калориметре выделяется в виде тепла около 28,8 * 105 Дж. Превращение глюкозы в клетках микроорганизмов в форму, пригодную для использования (АТФ), сопровождается выделением 12,9-105 Дж, или 44,1% всей энергии. Следовательно, более 50% энергии, заключенной в глюкозе, рассеивается в виде тепла.

Таким образом, дыхание — это процесс, при котором электроны переносятся от органических веществ на молекулярный кислород, то есть при дыхании роль акцептора электронов играет кислород.

В отличие от дыхания брожение — процесс, при котором отщепляемые от органического вещества электроны передаются на органические же соединения, то есть при брожении роль акцептора электронов играет обычно какое - нибудь органическое соединение, образующееся в ходе этого процесса. При брожении высвобождается лишь очень незначительная часть той химической энергии, которая потенциально может быть извлечена из молекулы глюкозы при полном окислении ее до СО2 и Н2О. В этом легко убедиться, сравнив количество выделившейся свободной энергии при анаэробном расщеплении глюкозы до молочной кислоты и при окислении ее до СО2 и Н2О:

При сбраживании глюкозы продукты брожения, которые в анаэробных условиях уже не могут быть использованы микробной клеткой и потому выводятся из нее, все еще содержат значительную часть той энергии, которая была заключена в молекуле глюкозы. Поэтому для получения того же количества энергии микроорганизмам, находящимся в анаэробных условиях, приходится расходовать гораздо больше глюкозы, чем микроорганизмам, живущим в условиях аэробиоза.

Как было указано выше, хемолитоавтотрофные бактерии получают свою энергию в результате окисления неорганических соединений — Н2, NH4+ , N02--, Fe2+, H2S, S°, SO32-, S203- 7 , CO.

У этих бактерий метаболизм родствен метаболизму хемоорганогетеротрофных организмов, но они обладают дополнительной способностью получать энергию за счет окисления того или иного неорганического соединения. В большинстве случаев эти бактерии имеют цепь переноса электронов, которая во многих отношениях сходна с соответствующей системой других аэробных микроорганизмов. Перенос электронов по этой цепи приводит к образованию АТФ.

Анаэробное дыхание. Некоторые микроорганизмы способны использовать для окисления органических или неорганических веществ не молекулярный, а связанный кислород окисленных соединений, например солей азотной, серной кислот, углекислоты которые превращаются при этом в более восстановленные соединения. Данные процессы идут в анаэробных условиях, и их называют анаэробным дыханием:

Следовательно, эти микроорганизмы в качестве конечного акцептора электронов используют не кислород, а неорганические соединения, такие как нитраты, сульфаты и карбонаты. Различия между аэробным и анаэробным дыханием заключаются в природе конечного акцептора электронов.

Свойство микроорганизмов переносить электроны на нитраты, сульфаты и карбонаты обеспечивает в достаточной степени полное окисление органического или неорганического вещества без использования молекулярного кислорода и обусловливает возможность получения ими большего количества энергии, чем при процессе брожения. При анаэробном дыхании выход энергии только на 10% ниже, чем при аэробном. Микроорганизмы, для которых характерно анаэробное дыхание, имеют набор ферментов цепи переноса электронов, но цитохромоксидаза заменяется нитратредуктазой (в случае использования нитратов) или аденилилсульфатредуктазой (в случае использования сульфатов).

Микроорганизмы, способные осуществлять анаэробное дыхание за счет нитратов, — факультативные анаэробы, они относятся главным образом к родам Pseudomonas и Bacillus. Микроорганизмы, использующие сульфаты в анаэробном дыхании, относятся к анаэробным и принадлежат к родам Desulfovibrio, Desulfomonas и Desulfotomaculum.

Фотосинтезирующие бактерии — зеленые серныепурпурные серные и пурпурные несерные— обитают в пресной и морской воде, во влажной и илистой почве, в прудах и озерах со стоячей водой, в серных источниках и т. д. Для них характерны примитивные, древнейшие формы фотосинтеза.

В клетках фотосинтезирующих бактерий имеются мезосомы, образующиеся в результате впячивания цитоплазматической мембраны. На мембранах мезосом находятся фотосинтезирующие пигменты и осуществляется световая фаза фотосинтеза, а темновая фаза происходит в цитоплазме.

Пигментные системы фотосинтезирующих бактерий несколько отличаются от таковых у растений. Хлорофиллоподобные пигменты бактерий называют бактериохлорофиллами. По своей структуре эти пигменты подобны хлорофиллам a и b, отличаясь от них лишь природой боковых цепей при некоторых атомах углерода. В настоящее время известно пять типов бактериохлорофиллов — аbcdе. Кроме того, в реакционных центрах всех бактерий обнаружен бактериофитин, который отличается от бактериохлорофилла заменой центрального атома магния на два атома водорода. Основные каротиноидные пигменты также несколько отличаются от каротиноидов водорослей.

Энергия света поглощается молекулами бактериохлорофилла и каротиноидов, а затем (путем миграции электронного возбуждения) передается реакционному центру, содержащему 2 или 4 особым образом упакованные молекулы бактериохлорофилла. Разделенные заряды переносятся через мембрану молекул этих бактериохлорофиллов, запуская электронный транспорт, обусловливающий образование АТФ, НАД ∙ Н + Н+ или восстановленного ферредоксина. Почти у всех видов фотосинтезирующих бактерий найдены ферменты цикла Кальвина, значит, данные организмы способны фиксировать СO2 в реакциях этого цикла.

Зеленые бактерии используют в качестве доноров электронов сероводород, серу или в некоторых случаях тиосульфат, а пурпурные бактерии — карбоновые и дикарбоновые кислоты, спирты и др. Наиболее распространенным донором электронов у фотосинтезирующих бактерий является сероводород (H2S):

6СO2 + 12H2S → С6Н12О6 + 6Н20 + 12S.

При недостатке H2S сера, которая часто накапливается в клетке в виде капель, может утилизироваться как донор электронов. Суммарное уравнение этого процесса имеет следующий вид:

6СO2 + 4S + 16Н2O → С6Н1206 + 6Н20 + 4H2SO4.

В этой реакции используются протоны воды, однако происходит не фотоокисление (Н2O → 2Н+ + 2е- + ½O2), а лишь не требующая затраты энергии диссоциация (Н20 → 2Н+ + OH-).

Подобным образом происходит реакция, в которой донором электронов служит тиосульфат (H2S2O3):

6СO2 + 3H2S2O3 + 15H2O → C6H12O6 + 6H20 + 6H2SO4.

Углеводороды являются не единственным я даже не всегда продуктом этих форм бактериального фотосинтеза.

Соединения, образующиеся в клетках зеленых и пурпурных бактерий, могут быть в дальнейшем использованы в качестве субстратов хемосинтезирующими анаэробами, которые, в свою очередь, продуцируют соединения, играющие роль питательных веществ у фототрофных бактерий. Следовательно, в анаэробных условиях бактерии этих двух типов могут сосуществовать.

В природе также существует группа фоторофных бактерий — цианобактерий, которые осуществляют двухстадийный фотосинтез с разложением воды и выделением кислорода.

13.

Аэробное дыхание состоит из двух фаз. Первая фаза включает в себя серию реакций, благодаря которым органический субстрат окисляется до СO2, а освобождающиеся атомы водорода перемещаются к акцепторам. В этой фазе совершается цикл реакций, известный под названием цикла Кребса, или цикла трикарбоновых кислот (ЦТК). Вторая фаза представляет собой окисление освобождающихся атомов водорода кислородом с образованием АТФ. Обе фазы совместно ведут к окислению субстрата до СО2 и Н2О и образованию биологически полезной энергии (в виде АТФ и других соединений).

Кратко разберем цепь реакций при протекании цикла Кребса (рис. 22).

Первичный распад углевода здесь идет так же, как при брожении, но образовавшаяся пировиноградная кислота подвергается иным превращениям. При декарбоксилироваиии из нее образуется уксусный альдегид (или уксусная кислота), который соединяется с коферментом одного из окислительных ферментов — коферментом А (КоА—SH), образуя ацетилкофермент А. Под действием фермента цитратсинтетазы двууглеродный ацетил-КоА (СН 3СО—S—КоА) реагирует с молекулой щавелевоуксусной кислоты, содержащей четыре атома углерода, в результате чего полулается соединение с шестью атомами углерода — лимонная кислота:

Лимонная кислота под влиянием фермента аконитазы теряет молекулу воды и превращается в цис-аконитовую кислоту, которая под действием того же фермента присоединяет Н2О и превращается в изолимонную кислоту.

При воздействии изоцитратдегидрогеназы, активной группой которой является НАДФ, от изолимонной кислоты отщепляются два атома водорода, в результате чего она превращается в щавелевоянтарную кислоту, от которой, в свою очередь, под действием фермента декарбоксилазы отщепляется углекислый газ (СО2). В образовавшейся б - кетоглутаровой кислоте число атомов углерода становится равным пяти, б - кетоглутаровая кислота под влиянием ферментного комплекса б - кетоглутаратдегидрогеназы с активной группой НАД превращается в янтарную, теряя СО2 и два атома водорода. Затем следуют реакции окисления янтарной кислоты в фумаровую с помощью фермента сукцинатдегидрогеназы с активной группой ФАД, превращения фумаровой кислоты в яблочную при участии фумаратгидратазы (фумаразы) и окисления яблочной в щавелевоуксусную кислоту, катализируемого малатдегидрогеназой с активной группой НАД.

Эти превращения сопровождаются отщеплением двух пар атомов водорода. Щавелевоуксусная кислота взаимодействует с коферментом А, и цикл повторяется снова. Каждая из десяти реакций цикла трикарбоновых кислот (за исключением одной) легкообратима. Углеродные атомы ацетил-КоА освобождаются в виде двух молекул СО2. В реакциях ферментативного дегидрирования атомы водорода удаляются четырьмя разными дегидрогеназами. В трех из этих четырех реакций окисления атомы водорода присоединяются к НАД+ (или НАДФ+), и только в случае сукцинатдегидрогеназы они непосредственно переносятся на флавинадениидииуклеотид (ФАД). Кроме того, образуется одна молекула АТФ. В ходе описанных реакций в трансформируемые соединения может включаться вода. Ферменты ЦТК располагаются на внутренней стороне цитоплазматической мембраны или на мембранах мезосом микроорганизмов.

Суммарную реакцию цикла трикарбоновых кислот можно представить в виде следующего уравнения:

Отметим, что в цикле трикарбоновых кислот образуется также ряд промежуточных продуктов, играющих роль предшественников для реакции биосинтеза макромолекул микробной клетки. Поэтому большинство ферментов цикла Кребса имеется и у облигатных анаэробов (последние не имеют только фермента, катализирующего трансформацию б - кетоглутаровой кислоты в янтарную). В цикл Кребса вовлекаются и продукты катаболизма жирных кислот и некоторых аминокислот.

Следовательно, цикл трикарбоновых кислот имеет большое значение не только для дыхания, но и для биосинтеза. Это один из центральных механизмов, с помощью которого все источники углерода используются для синтеза необходимых для жизни микроорганизмов соединений. Собственно, в этом и заключается смысл цикла Кребса, дающего вещества, легко превращающиеся в аминокислоты, белки, жиры, углеводы и т. д., которые затем становятся частью структуры клетки.

У некоторых микроорганизмов, усваивающих простые источники углерода, например уксусную кислоту, имеется модифицированная форма ЦТК, известная под названием глиоксилатного цикла (открыт Корнбергом и Кребсом в 1957 г.).

При всех реакциях дегидрирования в цикле Кребса атомы водорода, отщепляемые специфическими дегидрогеназами, акцептируются коферментами НАД и НАДФ и затем переносятся по цепи переносчиков. Однако фактически происходит перенос не атомов водорода, а только электронов. Ядра атомов водорода, по-видимому, свободно перемещаются по растворителю в виде протонов. По этой причине цепь переносчиков часто называют цепью переноса электронов, или дыхательной цепью. Цепь переноса электронов содержит переносчики — молекулы трех различных групп, представляющие собой окислительно - восстановительные ферменты, такие как флавопротеиды, хиноны и цитохромы.

Флавопротеиды содержат в качестве простетических групп флавинадениндинуклеотид (ФАД) или флавинмононуклеотид (ФМН); они передают электроны от восстановленных пиридиновых нуклеотидов к последующим переносчикам дыхательной цепи. Хиноны (наиболее распространен убихинон или кофермент Q) представляют собой небелковые переносчики с небольшой молекулярной массой. Они являются промежуточными компонентами между флавопротеидами и цитохромами. Цитохромы содержат железопорфириновые простетические группы и напоминают гемоглобин и миоглобин. При переносе электронов цитохромами происходит обратимое окисление атома железа:

Электроны, отнятые от органического субстрата, переносятся последовательно через промежуточные переносчики — флавопротеид, убихинон (кофермент Q) и цитохромы, пока последний переносчик в восстановленном состоянии не прореагирует с молекулярным кислородом. Последняя реакция катализируется ферментом цитохромоксидазой. В итоге такого необратимого конечного окисления вся цепь переносчиков электронов переходит в окисленное состояние, а молекулярный кислород восстанавливается до Н2О.

При переносе электронов на отдельных участках дыхательной цепи выделяется значительное количество свободной энергии. Для того чтобы использовать освобождающуюся свободную энергию, в микробной клетке имеется механизм, объединяющий в единый процесс выделение энергии и образование богатых энергией фосфатных связей (АТФ). Этот процесс называется окислительным фосфорилированием.

Цепь переноса электронов при дыхании схематически изображена на рисунке 23.

Все аэробные и факультативно-анаэробные бактерии имеют дыхательную цепь, причем ферменты, катализирующие процессы переноса электронов в этой цепи и окислительного фосфорилирования, локализованы в цитоплазматической мембране и мезосомах.

Большинство анаэробных микроорганизмов не имеют цепи переноса электронов. Поэтому при наличии кислорода воздуха в среде происходит непосредственный транспорт водорода флавиновыми дегидрогеназами (ФАД) на кислород, что приводит к образованию перекиси водорода H2 O2 Перекись водорода чрезвычайно токсична и должна быть удалена, что могут осуществить два фермента — каталаза и супероксиддисмутаза, однако они у анаэробных бактерий отсутствуют. В связи с этим одна из причин токсического действия кислорода на анаэробные микроорганизмы заключается в образовании и аккумуляции перекиси водорода в их клетках в летальных дозах.

В результате окислительного фосфорилирования большая часть энергии пировиноградной кислоты становится доступной для микроорганизмов. Суммарно полное окисление глюкозы можно выразить следующим уравнением:

Рассмотрим выход энергии при дыхании. Определено, что полное окисление одного моля (180 г) глюкозы дает 38 молекул АТФ. Каждая связь АТФ равпа приблизительно 3,4• 104 Дж, а 38 молекул АТФ дают 12,9-105 Дж. При сжигании одного моля глюкозы в калориметре выделяется в виде тепла около 28,8 * 105 Дж. Превращение глюкозы в клетках микроорганизмов в форму, пригодную для использования (АТФ), сопровождается выделением 12,9-105 Дж, или 44,1% всей энергии. Следовательно, более 50% энергии, заключенной в глюкозе, рассеивается в виде тепла.

Таким образом, дыхание — это процесс, при котором электроны переносятся от органических веществ на молекулярный кислород, то есть при дыхании роль акцептора электронов играет кислород.

В отличие от дыхания брожение — процесс, при котором отщепляемые от органического вещества электроны передаются на органические же соединения, то есть при брожении роль акцептора электронов играет обычно какое - нибудь органическое соединение, образующееся в ходе этого процесса. При брожении высвобождается лишь очень незначительная часть той химической энергии, которая потенциально может быть извлечена из молекулы глюкозы при полном окислении ее до СО2 и Н2О. В этом легко убедиться, сравнив количество выделившейся свободной энергии при анаэробном расщеплении глюкозы до молочной кислоты и при окислении ее до СО2 и Н2О:

При сбраживании глюкозы продукты брожения, которые в анаэробных условиях уже не могут быть использованы микробной клеткой и потому выводятся из нее, все еще содержат значительную часть той энергии, которая была заключена в молекуле глюкозы. Поэтому для получения того же количества энергии микроорганизмам, находящимся в анаэробных условиях, приходится расходовать гораздо больше глюкозы, чем микроорганизмам, живущим в условиях аэробиоза.

Как было указано выше, хемолитоавтотрофные бактерии получают свою энергию в результате окисления неорганических соединений — Н2, NH4+ , N02--, Fe2+, H2S, S°, SO32-, S203- 7 , CO.

У этих бактерий метаболизм родствен метаболизму хемоорганогетеротрофных организмов, но они обладают дополнительной способностью получать энергию за счет окисления того или иного неорганического соединения. В большинстве случаев эти бактерии имеют цепь переноса электронов, которая во многих отношениях сходна с соответствующей системой других аэробных микроорганизмов. Перенос электронов по этой цепи приводит к образованию АТФ.