
- •Микробиологические методы исследования:
- •6.Принципы систематики прокариот
- •8. Вид у бактерий
- •11.Характеристика фототрофных бактерий с аноксигенным путем метаболизма
- •12. Грамотрицательные аэробные хемолитотрофные бактерии
- •13, Спириллы и спиролхеты относятся к группе извитых микроорганизмов (spiro – завиток).
- •14. В девятом издании Определителя бактерий Берги все прокариоты распределены по группам, не имеющим таксономического статуса.
- •17. Грамположительные анаэробные бактерии
- •18. Грамположительные аэробные кокки
- •16.1.1.2. Стрептококки (род Streptococcus)
- •Спорообразование
- •Прорастание споры
- •21. Представители семейства Rickettsia представлены полиморфными, чаще кокковидными или палочковидными, неподвижными клетками. Грамотрицательны.
- •23. Археи
- •История открытия
- •Форма клеток и колоний
- •Мембраны
- •24. По устоявшейся классификации в настоящее время выделяют 5 типов архей[167]:
- •25. Физические факторы
- •Температура
- •Влажность
- •Излучения
- •Классификация ictv
- •29. Вирусология — раздел микробиологии, изучающий вирусы (от латинского слова virus — яд).
- •2. Формы и сочетания клеток
- •3. Жгутики прокариот
- •Базальное тело и механизм его работы
- •Механизм движения клетки
- •6. Клеточная мембрана и внутриклеточные орагнеллы прокариот
- •9. Генетические рекомбинации у бактерий
- •10. Споры и спорообразование прокариот
- •Субстратное фосфорилирование
- •14. Конструктивный метаболизм
- •16. Уксуснокислым брожением называется окисление этилового спирта в уксусную кислоту под влиянием уксуснокислых бактерий.
- •17. При спиртовом брожении микроорганизмы превращают углеводы с образованием этилового спирта как основного продукта брожения:
- •19. Рост и размножение
- •22 Основные типы пит. Сред
- •Методы определения количества бактерий
- •1/10 И переносят в следующую пробирку с 9 см3
- •2 Разведения или, если разведения не производили, проводится посев на 2 чашки по 1 мл
- •4, Помещают в термостат. Посевы инкубируют при заданной температуре в течение определенного
- •80°С дистиллированной воды и медленно доводят до кипения на слабом огне. Затем воду
- •24. Микроскопические методы исследования микроорганизмов
- •Правила работы с имерсионной системой:
- •Методы окраски бактерий (мазков)
- •25. Распространение микроорганизмов в природе.
- •2. Микрофлора тела человека.
- •В медицине
Классификация ictv
Международный комитет по таксономии вирусов разработал современную классификацию вирусов и выделил основные свойства вирусов, имеющие больший вес для классификации с сохранением единообразия семейств.
Была разработана объединённая таксономия (универсальная система для классификации вирусов). Седьмой отчёт ICTV закрепил для первых пор понятие о виде вируса как о низшем таксоне в иерархии вирусов[129][комм. 3]. Однако к настоящему моменту была изучена лишь небольшая часть от общего разнообразия вирусов, анализ образцов вирусов из человеческого организма выявил, что около 20 % последовательностей вирусных нуклеиновых кислот ещё не было рассмотрено ранее, а образцы из окружающей среды, например, морской воды и океанского дна, показали, что подавляющее большинство последовательностей являются совершенно новыми[130].
Основными таксономическими единицами являются[131]:
Отряд (-virales)
Семейство (-viridae)
Подсемейство (-virinae)
Род (-virus)
Вид (-virus)
Современная классификация ICTV (2012) включает 7 отрядов вирусов: Caudovirales, Herpesvirales, Ligamenvirales, Mononegavirales, Nidovirales, Picornavirales и Tymovirales[132]. Существование восьмого порядка (Megavirales[133]) пока ещё было только предположено. Классификация не выделяет подвиды, штаммы и изоляты. Всего насчитывается 6 порядков, 87 семейств, 19 подсемейств, 349 родов, около 2284 видов и свыше 3000 ещё неклассифицированных вирусов[134][135][136].
Лауреат Нобелевской премии биолог Дейвид Балтимор разработал классификацию вирусов по Балтимору[33][137]. Классификация ICTV в настоящее время объединяется с классификацией по Балтимору, составляя современную систему классификации вирусов[138][139].
Классификация вирусов по Балтимору основывается на механизме образования мРНК. Вирусы должны синтезировать мРНК из собственных геномов для образования белков и репликации своей нуклеиновой кислоты, однако каждое семейство вирусов имеет собственный механизм осуществления этого. Вирусные геномы могут быть одноцепоченые (оц) или двухцепочечные (дц), ДНК- или РНК-содержащие, могут использовать или не использовать обратную транскриптазу. Кроме того, одноцепочечные РНК-вирусы могут иметь положительную (+) или отрицательную (-) цепь РНК в составе своего генома.
Эта система включает в себя семь основных групп[140][141]:
(I) Вирусы, содержащие двуцепочечную ДНК и не имеющие РНК-стадии (например, герпесвирусы, поксвирусы, паповавирусы, мимивирус).
(II) Вирусы, содержащие одноцепочечную молекулу ДНК (например, парвовирусы). В этом случае ДНК всегда положительной полярности.
(III) Вирусы, содержащие двуцепочечную РНК (например, ротавирусы).
(IV) Вирусы, содержащие одноцепочечную молекулу РНК положительной полярности (например, пикорнавирусы, флавивирусы).
(V) Вирусы, содержащие одноцепочечную молекулу РНК негативной или двойной полярности (например, ортомиксовирусы, филовирусы).
(VI) Вирусы, содержащие одноцепочечную положительную молекулу РНК и имеющие в своем жизненном цикле стадию синтеза ДНК на матрице РНК, ретровирусы (например, ВИЧ).
(VII) Вирусы, содержащие двуцепочечную ДНК и имеющие в своём жизненном цикле стадию синтеза ДНК на матрице РНК, ретроидные вирусы (например, вирус гепатита B)[142].
Дальнейшее деление производится на основе таких признаков как структура генома (наличие сегментов, кольцевая или линейная молекула), генетическое сходство с другими вирусами, наличие липидной оболочки, таксономическая принадлежность организма-хозяина и так далее.
27.Взаимодействие вирусы с клеткой хозяина Взаимодействие идет в единой биологической системе на генетическом уровне.
Существует четыре типа взаимодействия:
1) продуктивная вирусная инфекция (взаимодействие, в результате которого происходит репродукция вируса, а клетки погибают);
2) абортивная вирусная инфекция (взаимодействие, при котором репродукции вируса не происходит, а клетка восстанавливает нарушенную функцию);
3) латентная вирусная инфекция (идет репродукция вируса, а клетка сохраняет свою функциональную активность);
4) вирус-индуцированная трансформация (взаимодействие, при котором клетка, инфицированная вирусом, приобретает новые, ранее не присущие ей свойства).
После адсорбции вирионы проникают внутрь путем эндоцитоза (виропексиса) или в результате слияния вирусной и клеточной мембран. Образующиеся вакуоли, содержащие целые вирионы или их внутренние компоненты, попадают в лизосомы, в которых осуществляется депротеинизация, т. е. «раздевание» вируса, в результате чего вирусные белки разрушаются. Освобожденные от белков нуклеиновые кислоты вирусов проникают по клеточным каналам в ядро клетки или остаются в цитоплазме.
Нуклеиновые кислоты вирусов реализуют генетическую программу по созданию вирусного потомства и определяют наследственные свойства вирусов. С помощью специальных ферментов (полимераз) снимаются копии с родительской нуклеиновой кислоты (происходит репликация), а также синтезируются информационные РНК, которые соединяются с рибосомами и осуществляют синтез дочерних вирусных белков (трансляцию).
После того как в зараженной клетке накопится достаточное количество компонентов вируса, начинается сборка вирионов потомства. Процесс этот происходит обычно вблизи клеточных мембран, которые иногда принимают в нем непосредственное участие. В составе вновь образованных вирионов часто обнаруживаются вещества, характерные для клетки, в которой размножается вирус. В таких случаях заключительный этап формирования вирионов представляет собой обволакивание их слоем клеточной мембраны.
Последним этапом взаимодействия вирусов с клетками является выход или освобождение из клетки дочерних вирусных частиц. Простые вирусы, лишенные суперкапсида, вызывают деструкцию клетки и попадают в межклеточное пространство. Другие вирусы, имеющие липопротеидную оболочку, выходят из клетки путем почкования. При этом клетка длительное время сохраняет жизнеспособность. В отдельных случаях вирусы накапливаются в цитоплазме или ядре зараженных клеток, образуя кристаллоподобные скопления – тельца включений.
28. Внеклеточная форма вируса — вирион, предназначенная для сохранения и переноса нуклеиновой кислоты вируса, характеризуется собственной архитектурой, биохимическими и молекулярно-генетическими особенностями. Под архитектурой вирионов понимают ультратонкую структурную организацию этих надмолекулярных образований, различающихся размерами, формой и сложностью строения. Для описания архитектуры вирусных структур разработана номенклатура терминов:
Белковая субъединица — единая, уложенная определенным образом полипептидная цепь. Структурная единица (структурный элемент) — белковый ансамбль более высокого порядка, образованный несколькими химически связанными идентичными или неидентичными субъединицами. Морфологическая единица — группа выступов (кластер) на поверхности капсида, видимая в электронном микроскопе. Часто наблюдаются кластеры, состоящие из пяти (пентамер) и шести (гексамер) выступов. Это явление получило название пентамерно-гексамерной кластеризации. Если морфологическая единица соответствует химически значимому образованию (сохраняет свою организацию в условиях мягкой дезинтеграции), то применяют термин капсомер. Капсид — внешний белковый чехол или футляр, образующий замкнутую сферу вокруг геномной нуклеиновой кислоты. Кор (core) — внутренняя белковая оболочка, непосредственно примыкающая к нуклеиновой кислоте. Нуклеокапсид — комплекс белка с нуклеиновой кислотой, представляющий собой упакованную форму генома. Суперкапсид или пеплос — оболочка вириона, образованная липидной мембраной клеточного происхождения и вирусными белками. Матрикс — белковый компонент, локализованный между суперкапсидом и капсидом. Пепломеры и шипы — поверхностные выступы суперкапсида. Как уже отмечалось, вирусы могут проходить через самые микроскопические поры, задерживающие бактерии, за что и были названы фильтрующимися агентами. Свойство фильтруемости вирусов обусловлено размерами, исчисляемыми нанометрами (нм), что на несколько порядков меньше, чем размеры самых мелких микроорганизмов. Размеры вирусных частиц, в свою очередь, колеблются в относительно широких пределах. Самые мелкие просто устроенные вирусы имеют диаметр чуть больше 20 нм (парвовирусы, пикорнавирусы, фаг Qβ), вирусы средних размеров — 100-150 нм (аденовирусы, коронавирусы). Наиболее крупными признаны вирусные частицы осповакцины, размеры которых достигают 170x450 нм. Длина нитевидных вирусов растений может составлять 2000 нм. Представители царства Vira характеризуются разнообразием форм. По своей структуре вирусные частицы могут быть простыми образованиями, а могут представлять собой достаточно сложные ансамбли, включающие несколько структурных элементов. Условная модель гипотетического вириона, включающего все возможные структурные образования, представлена на рисунке. Существует два типа вирусных частиц (ВЧ), принципиально отличающихся друг от друга: 1) ВЧ, лишенные оболочки (безоболочечные или непокрытые вирионы); 2) ВЧ, имеющие оболочку (оболочечные или покрытые вирионы).
Рис. 1. Строение гипотетического вириона
Выделено три морфологических типа вирионов, лишенных оболочки: палочковидные (нитевидные), изометрические и булавовидные (рис. 2). Существование первых двух типов непокрытых вирионов определяется способом укладки нуклеиновой кислоты и ее взаимодействием с белками. 1. Белковые субъединицы связываются с нуклеиновой кислотой, располагаясь вдоль нее периодическим образом так, что она сворачивается в спираль и образует структуру под названием нуклеокапсид. Такой способ регулярного, периодического взаимодействия белка и нуклеиновой кислоты определяет образование палочковидных и нитевидных вирусных частиц. 2. Нуклеиновая кислота не связана с белковым чехлом (возможные нековалентные связи очень подвижны). Такой принцип взаимодействия определяет образование изометрических (сферических) вирусных частиц. Белковые оболочки вирусов, не связанные с нуклеиновой кислотой, называют капсидом.
3. Булавовидные вирионы обладают дифференцированной структурной организацией и состоят из ряда дискретных структур. Основными структурными элементами вириона являются изометрическая головка и хвостовой отросток. В зависимости от вируса в структуре вириона также могут присутствовать муфта, шейка, воротничок, хвостовой стержень, хвостовой чехол, базальная пластинка и фибриллы. Наиболее сложную дифференцированную структурную организацию имеют бактериофаги T-четной серии, вирион которых состоит из всех перечисленных структурных элементов.
Вирионам или их компонентам могут быть присущи два основных типа симметрии (свойство тел повторять свои части) — спиральный и икосаэдрический. В том случае, если компоненты вириона обладают разной симметрией, то говорят о комбинированном типе симметрии ВЧ. (схема 1).
Спиральная укладка макромолекул описывается следующими параметрами: числом субъединиц на виток спирали (u, число необязательно целое); расстоянием между субъединицами вдоль оси спирали (p); шагом спирали (P); P=pu. Классическим примером вируса со спиральным типом симметрии является вирус табачной мозаики (ВТМ). Нуклеокапсид этого палочковидного вируса размером 18x300 нм состоит из 2130 идентичных субъединиц, на виток спирали приходится 16 1/3 субъединиц, шаг спирали составляет 2,3 нм.
Икосаэдрическая симметрия — самая эффективная для конструирования замкнутого чехла из отдельных субъединиц. При рассмотрении элементов икосаэдрической симметрии следует различать понятия симметрия и форма. Симметрия в данном случае — это набор поворотов, которые переводят объект сам в себя, форма — это лишь общий вид кубической поверхности объекта (тетраэдр, октаэдр, додекаэдр и т. д.). Многие объекты, имея икосаэдрическую симметрию, не имеют икосаэдрической формы. Икосаэдр — это геометрическая фигура, имеющая 12 вершин, 20 граней, 20 ребер.
Наименьшее число структурных элементов, способных образовать икосаэдр, равно 60, однако капсиды сложноустроенных вирусов могут быть образованы 60n структурными элементами. Для описания икосаэдрической упаковки структурных элементов в капсиде введено так называемое триангуляционное число (T). Это число, равное частному от деления числа субъединиц на 60. Так, у вируса некроза табака и фага φX174 T=1 (60 субъединиц), многие вирусы растений имеют T=3 (180 субъединиц), вирус Синдбис имеет T=4 (240 субъединиц), ротавирус имеет T=13 (780 субъединиц).
Многие крупные икосаэдрические вирусы для получения плотной упаковки капсида формируют субтриангуляции на основе структур меньших размеров, что предполагает наличие разных типов субъединиц на вершинах икосаэдра и нарушение локальной симметрии в местах их контактов. В этом случае наблюдается расхождение между реально существующей симметрией ВЧ и видом структуры с соответствующим числом Т. Наиболее простую конструкцию капсида, построенного по такому принципу, имеют паповавирусы. Их капсид образован 72 морфологическими единицами, каждая построена из трех белковых субъединиц, организованных в пентамеры, а ВЧ имеет вид структуры с Т=7.
Более сложная структура вириона наблюдается у аденовируса, капсид которого организован по принципу ансамблей, обладает строгой икосаэдрической симметрией и имеет вид структуры с Т=25. На вершинах икосаэдра находятся кластеры — пентоны, содержащие в основании так называемые фибры — стержень с утолщением на конце. Остальная структура капсида построена из гексонов. Гексоны и пентоны — это простейшие подструктуры капсида аденовирусов. Всего в состав аденовириона входит 12 оснований пентонов и 240 гексонов. При диссоциации в мягких условиях образуются надструктуры (капсомеры), состоящие из 9-ти гексонов. Еще более сложноустроенные вирионы, на пример частицы бактериофагов T-чётной серии, обладают комбинированным типом симметрии. Так, головка бактериофага T4 имеет икосаэдрический тип симметрии, а сокращенный чехол хвостового отростка обладает спиральным типом симметрии. В целом вирион фага T4 обладает комбинированным типом симметрии.
Другой тип вирусных частиц — это покрытые или оболочечные вирионы. Оболочечные вирионы, также как и непокрытые, могут быть палочковидными, нитевидными и изометрическими разной формы — от четко очерченных кирпичеобразных вирионов вируса оспы до плейоморфных частиц вирусов герпеса и коронавирусов, имеющих различные размеры и форму. Оболочка вириона (пеплос, суперкапсид) состоит из липидсодержащей мембраны клеточного происхождения (цитоплазматической мембраны, мембраны эндоплазматического ретикулюма или аппарата Гольджи, ядерной мембраны) и вирусных гликопротеинов, встроенных в мембрану. Оболочку вирионы приобретают в процессе почкования через ту или иную мембрану. Вирусные гликопротеины, находящиеся в мембране, как правило, формируют поверхностные выступы, называемые шипами и пепломерами. Эти поверхностные выступы характеризуются разной степенью упорядоченности и могут быть представлены одним белком (вирус кори) или двумя разными белками (вирусы гриппа, ретровирусы), могут быть образованы мономерами белка или его димерами и тримерами. Таким образом, структурная организация вириона описывается двумя характеристиками — наличием/отсутствием оболочки и типом симметрии капсида. Оболочечные вирионы могут обладать икосаэдрической, спиральной и комбинированной симметрией капсида, также как и безоболочечные, что представлено на схеме.