Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Численные методы ИПОиИТ лекции лето 2010-11.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
314.37 Кб
Скачать

Численное решение дифференциальных уравнений Основные определения и постановка задачи

Дифференциальное уравнение 1-го порядка, разрешенное относительно производной, имеет вид: (1)

Решением дифференциального уравнения (1) называется функция y(x), подстановка которой в уравнение обращает его в тождество: .

График решения y=y(x) называется интегральной кривой.

Задача Коши для дифференциального уравнения (1) состоит в том, чтобы найти решение дифференциального уравнения (1), удовлетворяющее начальному условию y(x0)=y0 (2). Пару чисел (x0,y0) называют начальными данными.

Решение задачи Коши называется частным решением дифференциального уравнения (1) при условии (2).

Геометрически задача Коши означает, что требуется найти интегральную кривую y=y(x), проходящую через заданную точку (x0,y0).

Теорема о существовании и единственности решения задачи Коши.

Пусть функция f(x,y) – правая часть уравнения - непрерывна вместе со своей частной производной по переменной y в некоторой области D на плоскости. Тогда при любых начальных данных (x0,y0)D задача Коши имеет единственное решение y=y(x).

При выполнении условий теоремы через точку (x0,y0) на плоскости проходит единственная интегральная кривая.

В классическом анализе разработано немало приемов решения дифференциальных уравнений, однако при решении практических задач эти методы не дают результата. В этом случае прибегают к методам приближенного решения дифференциальных уравнений. В зависимости от формы представления решения выделяют

  • аналитические методы (решение в виде аналитического выражения);

  • графические методы (решение в виде графика);

  • численные методы (решение в виде таблицы).

Численное решение задачи Коши состоит в том, чтобы получить искомое решение y(x) в виде таблицы его приближенных значений аргумента x на некотором отрезке [a, b]:

x0=a, x1, x2, …, xm=b (3)

Точки (3) называют узловыми, множество этих точек называют сеткой на отрезке [a, b].

Как правило, используют равномерную сетку с шагом h:

xi=x0+ih (i=0, 1, …, m)

Приближенные значения численного решения задачи Коши в узловых точках обозначим yi. yi y(xi), где (i=0, 1, …, m)

Начальное условие выполняется точно: y0 = y(x0).

Величина погрешности численного решения задачи Коши на сетке отрезка [a, b] оценивается величиной ,

т.е. расстоянием между векторами приближенного решения (y0, y1, …,ym) и точного решения (y(x0), y(x1), …,y(xm)) на сетке по m-норме.

Метод Эйлера

В основе метода Эйлера лежит идея графического построения решения дифференциального уравнения, этот метод называется также методом ломаных Эйлера.

Угловой коэффициент касательной к интегральной кривой в точке M0(x0,y0) равен .

Найдем ординату y1 касательной, соответствующей абсциссе x1=x0+h.

Уравнение касательной к кривой в точке M0 имеет вид или , откуда y1=y0+hf(x0,y0).

Аналогично, угловой коэффициент касательной к интегральной кривой в точке M1(x1,y1) равен . Точку M2(x2,y2) получим соответственно

x2=x1+h y2=y1+hf(x1,y1).

Продолжая вычисления по данной схеме, получим формулы Эйлера для приближенного решения задачи Коши с начальными данными (x0,y0) на сетке отрезка [a, b] с шагом h:

xi=xi-1+h yi=yi-1+hf(xi-1,yi-1). (4)

Г

M4

M3

рафической иллюстрацией приближенного решения является ломаная, соединяющая последовательно точки M0, M1, …,Mm, которую называют ломаной Эйлера.

M2

y

M1

M0

x

x0 x1 x2 x3 x4

O

Погрешность метода Эйлера можно оценить неравенством

, (5)

которое можно представить в виде d=Ch, где . Таким образом, метод Эйлера имеет первый порядок точности.

Практическую оценку погрешности решения, найденного на сетке с шагом h/2, в точке xi[a, b] производят с помощью приближенного равенства – правила Рунге:

(6)

где P – порядок точности численного метода.

Таким образом, оценка полученного результата по правилу Рунге вынуждает проводить вычисления дважды: с шагом h и h/2, причем совпадение десятичных знаков в полученных двумя способами результатах дает основание считать их верными.

Блок-схема решения ДУ методом Эйлера

Программа решения дифференциального уравнения методом Эйлера

program Eiler;

var x,a,b,h,y:real;

m,i:integer;

function f(x,y: real): real;

begin f:=cos(x);

end;

begin writeln('Введите значения концов отрезка [a,b]');

readln(a,b);

writeln('Введите начальное значение y0=y(x0)');readln(y);

writeln('Введите число значений функции на промежутке [a,b]'); read(m);

x:=a; h:=(b-a)/m;

for i:=0 to m do

begin writeln (x:10:3, y:15:4);

y:=y+h*f(x,y); x:=x+h

end; readln;

end.