
- •1. Переваривание и всасывание белков в пищеварительном тракте.
- •3) Процессы гниения белков в толстом кишечнике ж-х.
- •4)Осн. Этапы синтеза белка в клетке.
- •5. Реакции переваривания аминок-т в тканях.
- •6 Механизмы обезвреживания аммиака в орг-ме.
- •7. Синтез гемоглобина.
- •8. Распад гемоглобина. Желчные пигменты и их значение.
- •12 Классификация углеводов. Переваривание и всасывание углеводов в пищеварительном тракте животного.
- •13) Особенности перевар угливодов у жвачных
- •14) Углеводы и их роль в организме. Глюкоза. Гликоген.
- •15 Гликолиз анаэробный
- •16 Аэробный распад углеводов.
- •17. Глюконеогенез, его значение
- •18)Пентозный путь окисления углеводов
- •19)Концентрация сахара в крови животных, ее регуляция
- •20. Липиды, их переваривание и всасывание в пищеварительном тракте.
- •21 Желчь, ее роль в переваривание и всасывание жиров.
- •22)Окисление жирных кислот
- •23. Окисление глицерина.
- •24. Биосинтез жирных кислот.
- •25 Синтез фосфолипидов.
- •26. Синтез триглицеридов в организме
- •27. Синтез холестерина, его биологическая роль
- •28 Синтез кетоновых тел. Кетозы.
- •29)Биологическая активность витаминов
- •30. Классификация витаминов
- •32. Каротины и каротиноиды и их биологическая роль
- •33.Структура, роли витамина а в организме
- •34.Структура, роль витамина d в организме.
- •35. Структура, роль витамина е в организме
- •36.Структура, роль витамина к в организме
- •37.Структура, роль витамина f в организме.
- •38. Строение, роль витамина в1 в организме.
- •39. Строение, роль витамина в2 в организме.
- •40. Строение, роль витамина в3 в организме.
- •41. Строение, роль витамина в5 в организме.
- •42. Строение, роль витамина в6 в организме.
- •43:Строение, роль витамина в12 в организме.
- •44. Строение, роль витамина Вс в организме.
- •45. Биотин (витамин н, антисеборейный)
- •46: Строение, роль витамина с в организме.
- •47) Строение, биологическая роль холина в организме.
- •48)Ферменты –биологический катализаторы
- •49). Номенклатура и классификация ферментов.
- •50)Химическая природа и структура ферментов
- •51. Механизм действия ферментов.
- •52) Коферменты
- •53) Аллостерическая регуляция активности ферментов
- •54)Факторы, влияющие на активность ферментов
- •55.Изоферменты
- •56) Ферменты в клин. Диагностике
- •57).Оксидоредуктазы.
- •58).Трансферазы.
- •59). Гидролазы.
- •60) Лиазы и лигазы.
- •61)Изомеразы
- •62)Классификация гормонов
- •63 Механизмы действия стероидных гормонов.
- •64 Механизмы действия пептидных гормонов.
- •65 Гормоны гипофиза.
- •66 Гормоны щитовидной железы.
- •67) Гормоны паращитовидной железы
- •68)Гормоны мозгового слоя надпочечника
- •69) Гормоны коркового слоя надпочечника
- •70)Половые гормоны
- •71)Гормональная активность тимуса
- •72)Гормоноиды
- •73)Биологическое окисление, ферменты дыхательной цепи.
- •74)Окислительное фосфорилирование. Структура атф .
- •75) Простагландины
- •76) Роль, значение макроэлементов в организме.
- •77) Регуляция уровня Са и р в крови
- •78 Роль, значение микроэлементов в организме.
- •79) Взаимосвязь обмена белков жиров и углеводов
- •80) Хим. Состав крови
- •81). Белки сыворотки крови, их диагностическое значение.
- •82)Буферные системы крови
- •83) Механизм свертывания крови.
- •84. Биохимия почек.
- •85. Биохимия молочной железы. Молоко , молозево.
- •86) Роль печени в обмене веществ.
- •87) Обезвреживающая функция печени
- •88).Биохимия нервной ткани.
- •89.Биохимический механизм мышечного сокращения
- •90. Дыхательная функция крови.
51. Механизм действия ферментов.
Для осуществления контакта двух реагирующих -в в химич.р-и необход.условием явл.наличие в этих в-вах достаточного запаса кинетической энергии. Каждая хим.р-я имеет определенную энергию активации. Энергия активации (Еа) — энергия, необходимая для перевода молекул в активированное состояние — чем она выше, тем медленнее протекает р-я. В ферментативной р-и энергетич.барьер снижается по причине образования фермент-субстратного комплекса. При этом снижение энергии активации приводит к ускорению хода р-и,т.к.во взаимодействие может вступать большее число молекул. Фермент снижает энергию активации и тем самым повышает скорость р-и при относительно низкой температуре. Белки-ферменты снижают энергию активации данной р-и в большей мере, чем неорганические катализаторы.
Простейшую схему фыерментативной р-и можно представ.след.образом : E+S – ES – EP – E+P
где первоначальный фермент (Е) — фермент-субстратный комплекс (ES), превращение субстрата (ЕР), выход отдельных конечных продуктов реакции (Р). Схема показывает, что в ходе ферментативной реакции образуются несколько комплексов (ES,EP), однако при простейших рассчётах принимается во внимание только фермент-субстратный комплекс (ES). Скорость реакции или скорость появления конечного продукта реакции очевидно пропорциональна концентрации фермент-субстратного комплекса. В образовании фермент-субстратного комплекса участвуют водородные связи, гидрофобные и электростатические взаимодействия, временно образующиеся ковалентные связи. При образовании фермент-субстратного комплекса молекулы фермента и субстрата, сближаясь, определённым образом ориентируются относительно друг друга. В присутствии субстрата происходят конформационные изменения молекулы фермента, что обеспечивает ориентацию в пространстве функциональных групп активного центра, оптимальным образом подходящую к взаимодействию с соответствующими группами субстрата.
Активные центры ряда ферментов имеют электрофильные и нуклеофильные группировки, принимающие участие в химическом катализе. Электрофильные группировки – это акцепторы электронных пар, а нуклеофильные – это доноры электронных пар. В реакциях нуклеофильного замещения происходит образование ковалентных промежуточных соединений. При этом нуклеофильная группировка занимает место замещаемой группы, образуя ковалентный интермедиат, который неустойчив и легко распадается на конечные продукты реакции.
52) Коферменты
Коферменты, или коэнзимы — малые молекулы небелковой природы, специфически соединяющиеся с соответствующими белками, называемыми апоферментами, и играющие роль активного центра или простетической группы молекулы фермента.
Комплекс кофермента и апофермента образует целостную, биологически активную молекулу фермента, называемую холоферментом
Роль коферментов нередко играют витамины или их метаболиты (чаще всего — фосфорилированные формы витаминов группы B). Например, коферментом фермента карбоксилазы является тиаминпирофосфат, коферментом многих аминотрансфераз — пиридоксаль-6-фосфат.
В металлоферментах роль, аналогичную роли коферментов, могут исполнять катионы металлов, однако коферментами их обычно не называют.