
- •§ 1.1. Основные теоремы
- •2. Теорема Ролля
- •3. Теорема Лагранжа
- •4. Теорема Коши
- •§ 1.2. Правило лопиталя
- •1. Раскрытие неопределенностей вида и
- •Решение.
- •Решение.
- •Решение.
- •2. Другие типы неопределенностей
- •Решение.
- •Решение.
- •§ 1.3. Формула тейлора
- •1. Формула Тейлора для многочлена
- •Решение:
- •2. Формула Тейлора для произвольной функции
- •4. Разложение элементарных функций по формуле Маклорена
- •5. Примеры применения формулы Маклорена
- •2. Нахождение пределов.
- •§ 1.4. Исследование функции
- •Решение.
- •2. Точки экстремума функции. Необходимое и достаточное условия экстремума функции
- •Р ешение.
- •Решение.
- •Решение.
- •3. Асимптоты графика функции
- •5. Схема полного исследования функции
- •Решение.
- •6. Наибольшее и наименьшее значение функции
- •Решение.
- •Решение.
- •II. Неопределенный интеграл
- •§ 2.1. Первообразная и неопределенный интеграл
- •1. Понятие первообразной и неопределённого интеграла
- •2. Основные свойства неопределённого интеграла
- •3. Таблица основных неопределенных интегралов
- •Решение.
- •4. Интегрирование заменой переменной (метод подстановки)
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •4. Интегрирование по частям
- •Решение.
- •Решение.
- •§ 2.2. Интегрирование рациональных дробей
- •1. Разложение рациональной дроби на сумму простейших дробей
- •Решение.
- •Решение.
- •2. Интегрирование простейших рациональных дробей
- •Решение.
- •Решение.
- •§ 2.3. Интегрирование некоторых тригонометрических и иррациональных выражений
- •1. Интегрирование тригонометрических выражений
- •Решение.
- •Решение.
- •2. Интегрирование иррациональных выражений вида
- •Решение.
- •Решение.
- •3. Интегрирование биноминальных дифференциалов
- •Решение.
- •4. Интегрирование выражений содержащих квадратный трехчлен под знаком корня
- •Решение.
- •Решение.
- •III. Определенный и несобственный интегралы
- •§ 3.1. Понятие определенного интеграла
- •1. Задача о нахождении площади криволинейной трапеции
- •2. Интегральные суммы. Понятие определенного интеграла
- •3. Суммы Дарбу
- •4. Условие существования определенного интеграла
- •5. Классы интегрируемых функций
- •§ 3.2. Свойства определенного интеграла
- •1. Свойства, выраженные равенствами
- •2. Свойства, выраженные неравенствами
- •3. Теоремы о среднем
- •§ 3.3. Нахождение определенных интегралов
- •1. Интегралы с переменным верхним пределом
- •2. Формула Ньютона–Лейбница
- •Решение.
- •3. Формула замены переменной в определенном интеграле
- •Решение.
- •4. Формула интегрирования по частям в определенном интеграле
- •Решение.
- •§ 3.4. Несобственные интегралы
- •1. Несобственный интеграл первого рода
- •Решение.
- •Решение.
- •2. Несобственный интеграл второго рода
- •Решение.
- •IV. Геометрические и физические приложения определенного интеграла
- •§ 4.1. Длина дуги кривой
- •1. Понятие длины дуги кривой
- •2. Нахождение длины дуги кривой
- •Решение.
- •3. Случай пространственной кривой
- •§ 4.2. Площадь плоской фигуры
- •1. Понятие площади фигуры
- •2. Площадь криволинейной трапеции
- •3. Площадь криволинейного сектора
- •§ 4.3. Объем тел
- •2. Нахождение объемов тел
- •3. Площадь поверхности вращения
- •Решение.
- •§ 4.4. Некоторые физические приложения определеннго интеграла
- •1. Масса и центр тяжести
- •Список литературы
- •Ж.В. Иванова т.Л. Сурин с.В. Шерегов
Список литературы
Основная литература
Ильин В.А., Позняк Э.Т. Основы математического анализа. – М.: Наука, 1983. – Ч. 1.
Ильин В.А., Садовничий В.А., Сендов В.К. Математический анализ. М.: Наука, 1979. – Т. 1.
Никольский С.М. Курс математического анализа. – М.: Наука, 1990. – Т. 1.
Кудрявцев Л.Д. Курс математического анализа. М.: Наука, 1989. – Т. 1.
Фихтенгольц Г.М. Основы математического анализа. М.: Физматгиз, 1960. – Т. 1.
Дополнительная литература
Гусак А.А., Гусак Г.М. Справочник по высшей математике. – Мн.: Навука i тэхнiка, 1991.
Данко П.Е. [и др.]. Высшая математика в упражнениях и задачах: в 2 ч. – М.: Высшая школа, 1986.
Бутузов В.Ф. Математический анализ в вопросах и задачах. – М.: Физматгиз, 2001.
Иванова Ж.В., Сурин Т.Л., Шерегов С.В. Математический анализ. Введение в анализ. Производная. – Витебск: УО «ВГУ им. П.М. Машерова», 2008.
Учебно-методический комплекс по специальным дисциплинам для студентов математического факультета заочной формы обучения. – Витебск: УО «ВГУ им. П.М. Машерова», 2005. – Ч. 1.
Ж.В. Иванова т.Л. Сурин с.В. Шерегов
2009