
- •4. Первый закон Ньютона
- •Современная формулировка[
- •Второй закон Ньютона
- •Третий закон Ньютона[
- •Центробежное ускорение
- •Гравитационное ускорение
- •Ускорение свободного падения на Земле
- •Измерение
- •Сила трения в природе
- •Роль силы трения в быту
- •Сила трения в технике
- •Роль силы трения в природе
- •9. Механическая работа и мощность
- •Кинетическая и потенциальная энергии
- •Закон сохранения механической энергии
- •История появления термина[править | править исходный текст]
- •Определение импульса в механике Ньютона[править | править исходный текст]
- •Обобщённый импульс в теоретической механике[править | править исходный текст]
- •Определение через волны де Бройля[править | править исходный текст]
- •Закон сохранения импульса в общей теории относительности[править | править исходный текст]
- •Абсолютно упругий удар
- •Момент силы и момент импульса относительно неподвижного начала
- •11. Условия равновесия тел
- •Виды равновесия
- •Общие сведения[править | править исходный текст]
- •Предыстория[править | править исходный текст]
- •Единицы[править | править исходный текст]
- •13. Агрегатные состояния вещества с точки зрения мкт
- •14. Идеальный газ
- •Скорость молекул газа
- •Основное уравнение мкт газа
- •Дополнительные расчетные формулы по теме
- •Шкала Кельвина
- •Шкала Цельсия
- •Шкала Фаренгейта
- •Шкала Реомюра
- •Графики изопроцессов
- •Сравнительная таблица графиков изопроцессов
- •Кипение жидкости
- •Зависимость температуры кипения от давления
- •19. Влажность воздуха
- •Точка росы
- •Измерение влажности
- •20. Свойства поверхности жидкостей. Поверхностное натяжение. Капиллярные явления.
- •21. Кристаллические и аморфные тела
- •Типы и виды кристаллов
- •Одномерные дефекты[править | править исходный текст]
- •Двумерные дефекты[править | править исходный текст]
- •Трёхмерные дефекты[править | править исходный текст]
- •Методы избавления от дефектов[править | править исходный текст]
- •Полезные дефекты[править | править исходный текст]
- •22. Внутренняя энергия тел и способы ее изменения.
- •Внутренняя энергия. Количество теплоты. Работа в термодинамике
- •Первый закон термодинамики
- •Частные случаи первого закона термодинамики для изопроцессов
- •Цикл Карно для тепловой машины
- •24 Тепловой двигатель, устройство и принцип действия. Кпд теплового двигателя.Цикл Карно. Проблемы защиты окружающей среды от загрязнения.
- •25 1)Электрический заряд и его с-ва. Закон сохранения электрического заряда. Закон Кулона. 2) Диэлектрическая проницаемость среды.
- •26 Электростатическое поле.Напряженность электрического поля.Линии напряженности.Принцип суперпозиции электрических полей.
- •27 Работа при перемещении заряда в электрическом поле. Потенциальная энергия электрического поля. Разность потенциалов. Связь между напряженностью и потенциалом. Эквипотенциальные поверхности.
- •29 Электроемкость. Плоский конденсатор. Емкость конденсатора.
- •30 Соединение конденсаторов. Энергия заряженного конденсатора .Энергия электростатического поля. Объемная плотность энергии.
- •Электроемкость проводников. Конденсаторы
- •Энергия электростатического поля
- •31 Постоянный электрический ток.Сила и плотность тока. Закон Ома для однородного участка цепи.
- •Условия существования постоянного электрического тока.
- •Основные понятия.
- •Законы Ома.
- •Короткое замыкание.
- •32 Сопротивление проводника. Удельное сопротивление. Электрическая проводимость. Сверхпроводимость.
- •33 Последовательное и параллельное соединение проводников. Последовательное и параллельное соединение
- •Последовательное соединение проводников
- •Параллельное соединение проводников
- •34 Электро движущая сила. Закон ома для полной цепи. Ток короткого замыкания. Закон Ома для неоднородного участка цепи.
- •35) Работа и мощность тока.Закон Джоуля-Ленца. Приминение. Работа и мощность тока. Закон Джоуля -Ленца
- •Правила Кирхгофа для разветвленных цепей
- •36. Электрический ток в полупроводниках
- •8.8.1. Собственные и примесные полупроводники
- •38. Электрический ток в электролитах
- •39. Электрический Ток в Газах
- •Самостоятельный газовый разряд
- •Определение плазмы
- •Классификация
- •Температура
- •Степень ионизации
- •Плотность
- •Квазинейтральность
- •Применение
- •1. Тлеющий разряд
- •41. Электрический ток в вакууме.
- •Вольт-амперная характеристика вакуумного диода.
- •Основные свойства магнитного поля:
- •Дополнение (Принцип суперпозиции в статистической механике
- •Принцип суперпозиции в электродинамике
Кипение жидкости
Кипение — это интенсивный переход жидкости в пар, происходящий с образованием пузырьков пара по всему объему жидкости при определенной температуре.
В отличие от испарения, которое происходит при любой температуре жидкости, другой вид парообразования — кипение — возможен лишь при совершенно определенной (при данном давлении) температуре — температуре кипения.
При нагревании воды в открытом стеклянном сосуде можно увидеть, что по мере увеличения температуры стенки и дно сосуда покрываются мелкими пузырьками. Они образуются в результате расширения мельчайших пузырьков воздуха, которые существуют в углублениях и микротрещинах не полностью смачиваемых стенок сосуда.
Пары жидкости, которые находятся внутри пузырьков, являются насыщенными. С ростом температуры давление насыщенных паров возрастает, и пузырьки увеличиваются в размерах. С увеличением объема пузырьков растет и действующая на них выталкивающая (архимедова) сила. Под действием этой силы наиболее крупные пузырьки отрываются от стенок сосуда и поднимаются вверх. Если верхние слои воды еще не успели нагреться до 100 °С, то в такой (более холодной) воде часть водяного пара внутри пузырьков конденсируется и уходит в воду; пузырьки при этом сокращаются в размерах, и сила тяжести заставляет их снова опускаться вниз. Здесь они опять увеличиваются и вновь начинают всплывать вверх. Попеременное увеличение и уменьшение пузырьков внутри воды сопровождается возникновением в ней характерных звуковых волн: закипающая вода шумит.
Когда вся вода прогреется до 100 °С, поднявшиеся вверх пузырьки уже не сокращаются в размерах, а лопаются на поверхности воды, выбрасывая пар наружу. Возникает характерное булькание — вода кипит.
Кипение начинается после того, как давление насыщенного пара внутри пузырьков сравнивается с давлением в окружающей жидкости.
Во время кипения температура жидкости и пара над ней не меняется. Она сохраняется неизменной до тех пор, пока вся жидкость не выкипит. Это происходит потому, что вся подводимая к жидкости энергия уходит на превращение ее в пар.
Температура, при которой кипит жидкость, называется температурой кипения.
Температура кипения зависит от давления, оказываемого на свободную поверхность жидкости. Это объясняется зависимостью давления насыщенного пара от температуры. Пузырек пара растет, пока давление насыщенного пара внутри него немного превосходит давление в жидкости, которое складывается из внешнего давления и гидростатического давления столба жидкости.
Чем больше внешнее давление, тем больше температура кипения.
Всем известно, что вода кипит при температуре 100 °С. Но не следует забывать, что это справедливо лишь при нормальном атмосферном давлении (примерно 101 кПа). При увеличении давления температура кипения воды возрастает. Так, например, в кастрюлях-скороварках пищу варят под давлением около 200 кПа. Температура кипения воды при этом достигает 120 °С. В воде такой температуры процесс варки происходит значительно быстрее, чем в обычном кипятке. Этим и объясняется название «скороварка».
И наоборот, уменьшая внешнее давление, мы тем самым понижаем температуру кипения. Например, в горных районах (на высоте 3 км, где давление составляет 70 кПа) вода кипит при температуре 90°С. Поэтому жителям этих районов, использующим такой кипяток, требуется значительно больше времени для приготовления пищи, чем жителям равнин. А сварить в этом кипятке, например, куриное яйцо вообще невозможно, так как при температуре ниже 100 °С белок не сворачивается.
У каждой жидкости своя температура кипения, которая зависит от давления насыщенного пара. Чем выше давление насыщенного пара, тем ниже температура кипения соответствующей жидкости, т. к. при меньших температурах давление насыщенного пара становится равным атмосферному. Например, при температуре кипения 100 °С давление насыщенных паров воды равно 101 325 Па (760 мм рт. ст.), а паров ртути — всего лишь 117 Па (0,88 мм рт. ст.). Кипит ртуть при 357°С при нормальном давлении.