- •Преимущества и недостатки трубопроводного транспорта. Особенности эксплуатации линейной части.
- •2.Особенности эксплуатации резервуаров, оборудования перекачивающих станций.
- •3.Дистанционные методы диагностики линейной части магистральных трубопроводов.
- •4.Необходимые первичные данные о линейной части мт для проведения процедур диагностирования.
- •5. Внутритрубная диагностика. Назначение. Последовательность работ. Требования к трубопроводам.
- •7. Внутритрубная дефектоспопия. Виды снарядов-дефектоскопов, их назначение.
- •8. Ультразвуковой внутритрубный дефектоскоп типа wm. Назначение. Основные части дефектоскопа. Принцип работы.
- •9. Принцип работы ультразвукового внутритрубного дефектоскопа типа wm. Схемы контроля.
- •11. Принцип работы ультразвукового внутритрубного дефектоскопа типа сd. Схемы контроля.
- •12.Комбинированный внутритрубный ультразвуковой дефектоскоп wm&cd. Обнаруживаемые дефекты. Метод, заложенный в основу работы дефектоскопа.
- •14. Принцип работы дефектоскопа mfl. Принцип работы датчиков. Виды дефектограмм.
- •Принцип работы датчиков магнитного дефектоскопа mdf
- •15. Основные преимущества внутритрубного магнитного дефектоскопа перед ультразвуковым.
- •16. Четырёхуровневая система внутритрубной диагностики.
- •17. Контроль качества трубопроводов. Виды работ. Краткая характеристика.
- •18. Контроль качества подготовительных и земляных работ. Входной контроль материалов. Контролируемые параметры. Средства контроля.
- •19. Контроль качества сварочно-монтажных и изоляционно-укладочных работ. Контролируемые параметры. Средства контроля.
- •25. Типовая программа частичного обследования резервуаров. Этапы. Дополнительная программа.
- •26. Типовая программа полного обследования резервуаров. Этапы. Дополнительная программа.
- •27. Функциональная диагностика резервуаров.
- •28. Процедура полного технического обследования резервуара. Последовательность работ. Назначение и цели работ.
- •29. Оценка технического состояния резервуара. Необходимые данные. Составление отчета. Разделы отчета.
- •30. Методы диагностики технического состояния оборудования нпс.
- •31. Вибрационная диагностика насосных агрегатов. Параметры. Нормы вибрации. Критерии вибрационного контроля.
- •32. Виды вибрационного контроля насосных агрегатов. Краткая характеристика.
- •33. Оперативный вибрационный контроль.
- •34.Плановый вибрационный контроль.
- •35. Неплановый вибрационный контроль.
- •36. Специфика вибрации центробежных насосов. Основные дефекты, вызывающие вибрацию насосных агрегатов.
- •37. Параметрическая диагностика насосных агрегатов.
- •38. Виды диагностики газоперекачивающих агрегатов. Краткая характеристика.
- •39. Методы контроля технического состояния гпа. Краткая характеристика.
- •40. Виброакустическая диагностика гпа. Источники колебаний. Причины вибрации роторных машин.
- •41. Контролируемые параметры вибрации. Диагностика повреждений по параметрам вибрации.
- •42.Дерево решений для анализа технического состояния компрессорных агрегатов по параметрам вибрации. (схема)
- •43. Параметрическая диагностика гпа (схема измерений при теплотехнических испытаниях гпа).
- •44. Трибологическая диагностика гпа.
- •45. Вклад каждого метода контроля в оценку технического состояния гпа.
- •46. Основные неисправности механо-технологических систем и методы их диагностики.
15. Основные преимущества внутритрубного магнитного дефектоскопа перед ультразвуковым.
1. способность работы в любой рабочей среде — газах, жидкостях и газожидкостных смесях (мультифазовые потоки). Ультразвук распространяется только в однородных жидкостях, свободных от газовых пузырьков и взвесей. Наличие даже небольшого газового фактора приводит к неизбежной потере части информации. В обводненных нефтепроводах также может наблюдаться потеря части информации вследствие наличия раздела сред вода-нефть, ультразвук имеет свойство отражаться от раздела сред с различной скоростью его распространения, что приводит или к потере сигнала или к появлению ложных сигналов.
2. значительно меньшая критичность в отношении степени очистки внутренней полости трубопровода, особенно коррозионных карманов. Ультразвук не распространяется в парафине, песке, глине и прочих отложениях, что приводит к потере полезного сигнала и предъявляет особые требования к степени очистки внутренней полости трубопровода, при этом глубокие питтинги и язвы в принципе тяжело очистить от отложений.
3. отсутствие аппаратного порога чувствительности датчиков и триггера задержки.
Пояснение: Принцип работы ультразвукового дефектоскопа заключается в генерации (излучении) прямоугольного импульса с помощью ультразвукового датчика (пьезоизлучатель) и регистрации отраженных импульсов от внутренней и наружной стенки трубопровода и измерения временных промежутков между передними фронтами излученного и отраженного импульсов. Физические особенности регистрации ультразвуковых сигналов и преобразования их в электрические импульсы приводят к образованию так называемых "хвостов" первого отраженного импульса от внутренней стенки трубопровода при его сильном усилении (до 22 Дб). "Хвост" может быть зарегистрирован как отраженный импульс от наружной стенки и при этом возникает ложный сигнал, который можно интерпретировать как уменьшение толщины стенки. Описанная ситуация приводит к необходимости применения в измерительной системе триггера задержки, который рассчитывается по временному фактору и составляет, как правило, 40% от времени, необходимого на распространение сигнала от внутренней до наружной стенки. В результате ультразвуковой дефектоскоп позволяет измерять глубину дефектов до 60% от толщины стенки трубопровода, т.е. имеет мертвую зону. Измерение более глубоких дефектов невозможно, возможна только констатация факта, что глубина данного дефекта больше 0.6t (t — толщина стенки). По-другому говоря, два дефекта в 0.61t и 0.85t потребуют срочного и обязательного ДДК (дополнительный дефектоскопический контроль), при этом условия эксплуатации трубопровода могут позволить обойтись без снижения рабочего давления в первом случае и потребовать такового во втором.
4. возможность регистрации и измерения дефектов любой геометрической формы независимо от крутизны кромок дефекта.
Пояснение: принцип распространения сфокусированного линзой датчика ультразвукового сигнала узкой направленной формы предполагает его отражение от стенок дефекта по принципу: угол падения равен углу отражения. Вследствие чего отраженный сигнал от стенок дефекта с крутыми кромками не возвращается к датчику, являющемуся одновременно и излучателем и приемником сигнала. В первую очередь это относится к дефектам типа язва, питтинг, глубокий и узкий механический задир, царапина. Указанный факт подтверждается невозможностью регистрации ультразвуковыми дефектоскопами обычной конфигурации трещин в теле трубы и прочих дефектов плоскостного типа, имеющих поперечное расположение по отношению к стенке трубопровода.
5. возможность регистрации дефектов на больших скоростях движения дефектоскопа.
Пояснение: для ультразвукового снаряда, т.к. датчик является одновременно и излучателем и приемником сигнала, существует предельная максимальная скорость перемещения по трубопроводу, при которой отраженный сигнал принимается датчиком с учетом его собственных размеров и перемещения в продольном направлении, соответствующего времени, необходимому для возвращения отраженного сигнала от стенок трубопровода. Как правило, проблемы с регистрацией отраженного сигнала наступают уже на скорости свыше 2 м/с (с учетом стандартной частоты сканирования датчиков в 300 Гц перемещение центра ультразвукового датчика в продольном направлении при скорости 2 м/с составляет 6.6 мм, что сопоставимо с размерами самого датчика и, соответственно, его способностью принять ослабленный отраженный сигнал).
6. главное преимущество магнитных дефектоскопов заключается в способности регистрировать дефекты (трещины, непровары, несплавления) и аномалии (утяжина, подрез, превышение проплава и пр.) сварного шва и трещиноподобные дефекты в теле трубы, что в принципе недоступно при использовании ультразвуковой технологии (см. выше).
Все вышеперечисленные преимущества в совокупности с использованием последних достижений сенсорной технологии и микропроцессорной техники, достижений в области миниатюризации, применением высокопрочных и износостойких материалов позволили разработать новое поколение магнитных инспекционных снарядов, имеющих высокие технические характеристики и позволяющих с высокой степенью вероятности регистрировать и точно измерять геометрические параметры всех типов дефектов. Применение на практике таких снарядов привело к отказу от использования ультразвуковых технологий ведущими операторами трубопроводов, таких как BP, SHELL, PHILIPS и др., не говоря уже об операторах газопроводов, применение ультразвуковых технологий для которых требует дорогостоящих процедур "батчинга" (создания жидкостных пробок), которые приводят также к экономическим потерям, связанным с нарушением технологических графиков перекачки транспортируемого продукта.
Отказ от использования ультразвуковых технологий связан, прежде всего, с получением значительного экономического эффекта — прогон одного снаряда всегда дешевле, чем двух, т.к. помимо прочего позволяет сократить косвенные расходы Заказчика на организацию дополнительного пропуска и сопровождения инспекционного снаряда. При этом Заказчик ничего не теряет в данных, а при использовании технически
