- •1. Основные понятия статики.
- •3. Активные силы и реакции связей.
- •4. Основные задачи статики.
- •5.Теорема о трех непараллельных силах.
- •6.Система сходящихся сил.
- •7.Приведение системы сходящихся сил к равнодействующей.
- •9.Алгебраический способ нахождения равнодействующей.
- •10.Геометрическое и аналитическое условие равновесия системы сходящихся сил.
- •11.Алгебраический момент силы относительно точки.
- •12. Векторный момент силы относительно точки.
- •13.Момент силы относительно оси.
- •14. Связь между моментом силы относительно оси и векторным моментом силы относительно точки на оси.
- •15. Сложение двух параллельных сил, направленных в одну сторону.
- •16.Сложение двух параллельных, неравных по модулю сил , и направленных в противоположные стороны.
- •17. Пара сил.
- •18. Теорема об эквивалентности пар сил.
- •19. Свойства пар сил.
- •21. Условия равновесия пар.
- •23. Приведение произвольной системы сил к силе и паре сил ( основная теорема статики). Теорема Пуансо.
- •26. Инварианты статики.
- •27. Частные случаи приведения системы сил.
- •28. Приведение системы сил к динаме ( динамическому винту).
- •29. Уравнение центральной винтовой оси системы.
- •30. Теорема Вариньона о моменте равнодействующей.
- •31. Условия равновесия произвольной пространственной системы сил.
- •33 Равновесие произвольной плоской системы сил.
- •35. Статически определимые и статически неопределимые системы .
- •36. Равновесие системы сил.
- •37. Трение покоя.
- •38. Трение скольжения.
- •39 Законы трения.
- •40 Угол и конус трения.
- •41Основные законы трения качения
- •42 Трение верчения.
- •43 Плоские фермы.
- •44 Расчет плоских ферм ( способ вырезания узлов).
- •45 Расчет плоских ферм ( способ Риттера).
- •46 Центр параллельных сил. Частные случаи приведения сил для системы параллельных сил.
- •49 Введение в кинематику. Основные задачи кинематики.
- •50 Способы задания движения точки. Векторный способ задания движения. Скорость и ускорение.
- •51 Координатный способ задания движения точки. Скорость и ускорение.
- •52 Переход от векторного способа к координатному.
- •53 Естественный способ задания движения точки. Скорость и ускорение.
- •54 Классификация движения по ускорениям.
- •55 Уравнения движения точки по траектории любой формы.
- •57 Простейшие движения твердого тела. Поступательное движение.
- •59 Вращательное движение твердого тела. Линейная скорость. Векторная формула Эйлера.
4. Основные задачи статики.
Содержание статики абсолютно твердого тела составляют две основные задачи:
1. Задача о приведении системы сил: как данную систему сил заменить другой, наиболее простой, ей эквивалентной? 2. Задача о равновесии: каким условиям должна удовлетворять система сил, приложенная к данному телу (или материальной точке), чтобы она была уравновешенной системой? Вторая задача часто ставится в тех случаях, когда равновесие заведомо имеет место, например, когда заранее известно, что тело находится в равновесии, которое обеспечивается связями, наложенными на тело. При этом условия равновесия устанавливают зависимость между всеми силами, приложенными к телу. С помощью этих условий удается определить опорные реакции. Определение реакций связей (внешних и внутренних) необходимо для последующего расчета (4.Продолжение) прочности конструкции. В более общем случае, когда рассматривается система тел, имеющих возможность перемещаться друг относительно друга, одной из основных задач статики является задача определения возможных положений равновесия.
5.Теорема о трех непараллельных силах.
Теорема о трех силах. Если (абсолютно твердое) тело находится в равновесии под действием плоской системы трех непараллельных сил (т.е. сил, из которых хотя бы две непараллельные), то линии их действия пересекаются в одной точке. Доказательство. Пусть из трех сил F1, F2, F3 , приложенных соответственно в точках А, В и С , непараллельными являются F1 и F2. Продолжим линии их действия до пересечения в точке О и перенесем в эту точку обе силы. Очевидно, система {F1, F2} эквивалентна , а эта последняя уже имеет равнодействующую R. Таким образом, {F1,F2,F3} {R, F3,}.
6.Система сходящихся сил.
Система сходящихся сил – линии действия сил пересекаются в одной точке.
План исследования любой системы сил соответствует последовательному решению
трех вопросов : 1.Как упростить систему? 2.Каков простейший вид системы? 3.Каковы условия равновесия системы?
Перенесем все силы по линии их действия в точку пересечения (кинематическое состояние тела при этом не изменится – следствие из аксиомы присоединения). Сложим первые две силы F1 и F2 (аксиома параллелограмма). Количество сил уменьшилось на единицу. Повторим эту же операцию со следующей силой F4.
О
сталась
всего одна сила, эквивалентная исходной
системе сил.
Сложение сил построением параллелограммов можно заменить построением силового треугольника – выбирается одна из сил или изображается параллельно самой себе с началом в любой произвольной точке, все другие силы изображаются параллельными самим себе с началом, совпадающим с концом предыдущей силы.
Результатом такого сложения является вектор, направленный из начала первой силы к концу последней из сил.
Простейший вид системы – сила, приложенная в точке пересечения исходных сил. Таким образом, сходящаяся система сил приводится к одной силе – равнодействующей (силе, эквивалентной исходной системе сил), равной геометрической сумме сил системы.
Если равнодействующая системы оказывается не равной нулю, тело под действием такой системы силы будет двигаться в направлении равнодействующей (система сил не уравновешена). Для того, чтобы уравновесить систему достаточно приложить силу, равную полученной равнодействующей и направленной в противоположную сторону (аксиома о двух силах). Таким образом, условием равновесия системы сходящихся сил является обращение равнодействующей в ноль.
Это условие
эквивалентно замкнутости силового
треугольника определенным образом, а
именно,
направление
всех сил при обходе по контуру не
изменяется по направлению:
