Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Понятие информации.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
2.5 Mб
Скачать

Сжатие изображений Особенности

Алгоритмы сжатия изображений – бурно развивающаяся область машинной графики. Основной объект приложения усилий в ней – изображения – своеобразный тип данных, характеризуемый тремя особенностями:

  1. Изображения (как и видео) обычно требует для хранения гораздо большего объема памяти, чем текст. Так, скромная, не очень качественная иллюстрация на обложке книги размером 500x800 точек, занимает 1.2 Мб – столько же, сколько художественная книга из 400 страниц (60 знаков в строке, 42 строки на странице). Эта особенность изображений определяет актуальность алгоритмов архивации графики.

  2. Второй особенностью изображений является то, что человеческое зрение при анализе изображения оперирует контурами, общим переходом цветов и сравнительно нечувствительно к малым изменениям в изображении. Таким образом, можно создать эффективные алгоритмы архивации изображений, в которых декомпрессированное изображение не будет совпадать с оригиналом, однако человек этого не заметит. Данная особенность человеческого зрения позволила создать специальные алгоритмы сжатия, ориентированные только на изображения. Эти алгоритмы позволяют сжимать изображения с высокой степенью сжатия и незначительными с точки зрения человека потерями.

  3. Можно легко заметить, что изображение, в отличие, например, от текста, обладает избыточностью в двух измерениях. Т.е. как правило, соседние точки, как по горизонтали, так и по вертикали, в изображении близки по цвету. Кроме того, мы можем использовать подобие между цветовыми плоскостями R, G и B в алгоритмах, что дает возможность создать еще более эффективные алгоритмы. Таким образом, при создании алгоритма компрессии графики мы используем особенности структуры изображения.

LZW

LZW-код (Lempel-Ziv & Welch) является на сегодняшний день одним из самых распространенных кодов сжатия без потерь. Именно с помощью LZW-кода осуществляется сжатие в таких графических форматах, как TIFF и GIF, с помощью модификаций LZW осуществляют свои функции очень многие универсальные архиваторы. К сожалению, детально описать его работу простым языком не представляется возможным. В документации его работа описана при помощи языка C, что для большинства наших читателей будет, пожалуй, тяжеловато. Скажем только, что работа алгоритма основана на поиске во входном файле повторяющихся последовательностей символов, которые кодируются комбинациями длиной от 8 до 12 бит. Таким образом, наибольшую эффективность данный алгоритм имеет на текстовых файлах и на графических файлах, в которых имеются большие одноцветные участки или повторяющиеся последовательности пикселов. Реализация алгоритма LZW жестко зафиксирована международным стандартом и Американским Национальным институтом стандартов (ANSI), однако существуют достаточно интересные его модификации, которые дают больший коэффициент сжатия некоторых специфичных типах файлов - например, на исходных текстах программ.

Отсутствие потерь информации при LZW-кодировании обусловило широкое распространение основанного на нем формата TIFF. Этот формат не накладывает каких-либо ограничений на размер и глубину цвета изображения и широко распространен, например, в полиграфии. Другой основанный на LZW формат - GIF - более примитивен - он позволяет хранить изображения с глубиной цвета не более 8 бит/пиксел. В начале GIF - файла находится палитра - таблица, устанавливающая соответствие между индексом цвета - числом в диапазоне от 0 до 255 и истинным, 24-битным значением цвета.

Таким образом, этот формат можно назвать форматом без потерь лишь в том смысле, что все потери информации происходят до LZW-кодирования - при преобразовании исходной картинки в 8-битную с индексированной палитрой.

Несомненным достоинством этого формата является возможность хранить в одном файле последовательности изображений, образующих примитивную анимацию. Именно благодаря этой особенности он нашел широкое применение в Internet.