Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 4 ОЗО.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
415.74 Кб
Скачать

Лекция 4.

Энергетический обмен. Цепь переноса протонов и электронов – 5 ферментативных комплексов. Окислительное фосфорилирование. Окислительные процессы, не связанные с запасанием энергии – микросомальное окисление, свободно-радикальное окисление, активные формы кислорода. Антиоксидантная система

Введение в биоэнергетику

Биоэнергетика, или биохимическая термодинамика, занимается изучением энергетических превращений, сопровождающих биохимические реакции.

Изменение свободной энергии (∆G) – это та часть изменения внутренней энергии системы, которая может превращаться в работу. Иначе говоря, это полезная энергия и выражается уравнением

∆G = ∆Н - Т∆S,

где ∆Н – изменение энтальпии (теплоты), Т – абсолютная температура, ∆S – изменение энтропии. Энтропия служит мерой неупорядоченности, хаотичности системы и возрастает при самопроизвольных процессах.

Если значение ∆G отрицательное, то реакция протекает самопроизвольно и сопровождается уменьшением свободной энергии. Такие реакции называют экзэргоническими. Если значение ∆G положительное, то реакция будет протекать только при поступлении свободной энергии извне; такая реакция называется эндэргонической. При ∆G равном нулю система находится в равновесии. Величина ∆G при стандартных условиях протекания химической реакции (концентрация веществ-участников 1,0 М, температура 25 ºС, рН 7,0) обозначается G0 и называется стандартной свободной энергией реакции.

Жизненно важные процессы в организме – реакции синтеза, мышечное сокращение, проведение нервного импульса, транспорт через мембраны – получают энергию путем химического сопряжения с окислительными реакциями, в результате которых происходит высвобождение энергии. Т.е. эндэргонические реакции в организме сопряжены с экзэргоническими (рис.1).

Синтез

Экзэргонические реакции

 Е ЕЕЕ

Мышечное сокращение

Нервное возбуждение

Активный транспорт

Рис.1. Сопряжение экзэргонических процессов с эндэргоническими.

Для сопряжения эндэргонических реакций с экзэргоническими реакциями необходимы аккумуляторы энергии в организме, в которых запасается примерно 50% энергии.

Аккумуляторы энергии в организме

1. Внутренняя мембрана митохондрий – это промежуточный аккумулятор энергии при получении АТФ. За счет энергии окисления веществ происходит «выталкивание» протонов из матрикса в межмембранное пространство митохондрий. В результате создается электрохимический потенциал (ЭХП) на внутренней мембране митохондрий. При разрядке мембраны энергия электрохимического потенциала трансформируется в энергию АТФ: Еокисл.  Еэхп  ЕАТФ. Для реализации этого механизма внутренняя мембрана митохондрий содержит ферментативную цепь переноса электронов на кислород и АТФ-синтазу (протонзависимую синтазу АТФ).

2. АТФ и другие макроэргические соединения. Материальным носителем свободной энергии в органических веществах являются химические связи между атомами. Обычным энергетическим уровнем возникновения или распада химической связи является ~ 12,5 кДж/моль. Однако имеется ряд молекул, при гидролизе связей которых выделяется более 21 кДж/моль энергии (табл.1). К ним относятся соединения с макроэргической фосфоангидридной связью (АТФ), а также ацилфосфаты (ацетил-фосфат, 1,3-бисфосфоглицерат), енол-фосфаты (фосфоенолпируват) и фосфогуанидины (фосфокреатин, фосфоаргинин).

Таблица 1.

Стандартная свободная энергия гидролиза некоторых фосфорилированных соединений

Соединение

G0 (кДж/моль)

Фосфоенолпируват

-61,9

1,3-Бисфосфоглицерат

-49,4

Ацетил-фосфат

-43,1

Фосфокреатин

-43,1

Пирофосфат (РРн)

-33,5

АТФ (АМФ+РРн)

-32,2

АТФ (АДФ+Рн)

-30,5

Глюкозо-1-фосфат

-20,9

Фруктозо-6-фосфат

-13,8

Глюкозо-6-фосфат

-13,8

Глицерол-3-фосфат

-9,2

Основным макроэргическим соединением в организме человека является АТФ.

В АТФ цепочка из трех фосфатных остатков связана с 5’-ОН группой аденозина. Фосфатные (фосфорильные) группы обозначаются как ,  и . Два остатка фосфорной кислоты соединены между собой фосфоангидридными связями, а -остаток фосфорной кислоты – фосфоэфирной связью. При гидролизе АТФ в стандартных условиях выделяется -30,5 кДж/моль энергии.

При физиологических значениях рН АТФ несет четыре отрицательных заряда. Одной из причин относительной нестабильности фосфоангидридных связей является сильное отталкивание отрицательно заряженных атомов кислорода, которое ослабевает при гидролитическом отщеплении концевой фосфатной группы. Поэтому такие реакции являются высоко экзэргоническими.

В клетках АТФ находится в комплексе с ионами Mg2+ или Mn2+, координационно связанными с - и -фосфатом, что увеличивает изменение свободной энергии при гидролизе АТФ до 52,5 кДж/моль.

Центральное место в приведенной шкале (табл. 8.3) занимает цикл АТФ  АДФ + Рн. Это позволяет АТФ быть как универсальным аккумулятором, так и универсальным источником энергии для живых организмов.

В клетках теплокровных АТФ как универсальный аккумулятор энергии возникает двумя путями:

1) аккумулирует энергию более энергоемких соединений, стоящих выше АТФ в термодинамической шкале без участия О2субстратное фосфорилирование: S  Р + АДФ  S + АТФ;

2) аккумулирует энергию электрохимического потенциала при разрядке внутренней мембраны митохондрии – окислительное фосфорилирование.

АТФ является универсальным источником энергии для совершения основных видов работы клетки (передача наследственной информации, мышечное сокращение, трансмембранный перенос веществ, биосинтезы): 1) АТФ+Н2ОАДФ+Рн; 2) АTФ + Н2О  АМФ + РРн.

Во время интенсивных упражнений скорость использования АТФ может достигать 0,5 кг/мин.

Если ферментативная реакция термодинамически невыгодна, то она может осуществиться при сопряжении с реакцией гидролиза АТФ. Гидролиз молекулы АТФ изменяет равновесное отношение субстратов и продуктов в сопряженной реакции в 108 раз.

Для количественной оценки энергетического состояния клетки используют показатель – энергетический заряд. Многие реакции метаболизма контролируются энергетическим обеспечением клеток, который контролируется энергетическим зарядом клетки. Энергетический заряд может колебаться от 0 (все АМФ) до 1 (все АТФ). Согласно Д.Аткинсону, образующие АТФ катаболические пути ингибируются высоким энергетическим зарядом клетки, а утилизирующие АТФ анаболические пути стимулируются высоким энергетическим зарядом клетки. Оба пути функционируют одинаково при энергетическом заряде, близком к 0,9 (точка перекреста на рисунке 8.3). Следовательно, энергетический заряд, подобно рН, является буферным регулятором метаболизма (соотношения катаболизма и анаболизма). В большинстве клеток энергетический заряд колеблется в пределах 0,80-0,95.

Энергетический заряд =

К макроэргическим соединениям относят также нуклеозидтрифосфаты, которые обеспечивают энергией ряд биосинтезов: УТФ – углеводов; ЦТФ – липидов; ГТФ – белков. В биоэнергетике мышц важное место занимает креатинфосфат.

3. НАДФН+Н+ – никотинамидадениндинуклеотидфосфат восстановленный. Это специальный аккумулятор с высокой энергией, который используется в клетке (цитозоль) для биосинтезов. R-CH3 + НАДФН2 + О2  R-CH2ОН + Н2О + НАДФ+ (здесь показано создание ОН-группы в молекуле).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]