
- •Содержание
- •1.Рабочая программа
- •2.Модуль Вводный
- •3.Модуль Формальные грамматики и языки
- •3.1.Языки и цепочки символов. Способы задания языков
- •3.1.1.Цепочки символов. Операции над цепочками символов
- •3.1.2.Понятие языка. Формальное определение языка
- •3.1.3.Способы задания языков
- •3.1.4.Синтаксис и семантика языка
- •3.2.Определение грамматики
- •3.2.1.Особенности языков программирования
- •3.2.2.Определение грамматики. Форма Бэкуса—Наура
- •3.2.3.Принцип рекурсии в правилах грамматики
- •3.2.4.Другие способы задания грамматик
- •3.3.Классификация языков и грамматик
- •3.3.1.Классификация грамматик
- •3.3.2.Классификация языков
- •3.4.Контроль
- •4.Модуль Распознаватели, механизм вывода цепочек символов
- •4.1.Цепочки вывода. Сентенциальная форма.
- •4.1.1.Сентенциальная форма грамматики. Язык, заданный грамматикой
- •4.1.2.Левосторонний и правосторонний выводы
- •4.1.3.Однозначные и неоднозначные грамматики
- •4.1.4.Эквивалентность и преобразование грамматик
- •4.2.Распознаватели. Задача разбора
- •4.2.1.Общая схема распознавателя
- •4.2.2.Виды распознавателей
- •4.2.3.Классификация распознавателей по типам языков
- •4.3.Контроль
- •5.Модуль Регулярные грамматики и языки
- •5.1.Регулярные языки и грамматики
- •5.2.Леволинейные и праволинейные грамматики. Автоматные грамматики
- •5.3.Алгоритм преобразования регулярной грамматики к автоматному виду
- •5.4.Конечные автоматы
- •5.4.1.Определение конечного автомата
- •5.4.2.Детерминированные и недетерминированные конечные автоматы
- •5.4.3.Преобразование конечного автомата к детерминированному виду
- •5.5.Контроль
- •6.Модуль Контекстно-свободные грамматики и языки
- •6.1.Контекстно-свободные языки
- •6.1.1.Распознаватели кс-языков. Автоматы с магазинной памятью. Определение мп-автомата
- •6.2.Классы кс-языков и грамматик. Класс ll(k) грамматик.
- •6.3.Принципы построения распознавателей для ll(k)-грамматик
- •6.4.Левая факторизация
- •6.5.Удаление левой рекурсии
- •6.6.Алгоритм разбора для ll(1)-грамматик
- •6.7.Алгоритм построения множества first(1,a)
- •6.8.Алгоритм построения множества follow(1,a)
- •6.9.Восходящие распознаватели кс-языков без возвратов
- •6.9.1.Определение lr(k)-грамматики
- •6.10.Принципы построения распознавателей для lr(k)-грамматик
- •6.10.1.Грамматики простого предшествования
- •6.11.Распознаватели для lr(0) и lr(1) грамматик
- •6.11.1.Распознаватель для lr(0)-грамматики
- •6.11.2.Распознаватель для lr(1) грамматики
- •6.12.Контроль
- •7.Модуль Инструментальные средства для построения трансляторов
- •7.1.Инструментальные средства для построения компиляторов
- •7.1.1.Построитель лексических анализаторов Lex
- •7.2.Контроль
- •8.Модуль Особенности программирование трансляторов
- •8.1.Использование значений произвольных типов, алгоритм разбора
- •8.1.1.Алгоритм синтаксического разбора
- •8.1.2.Семантический стек
- •8.2.Неоднозначности и конфликты
- •8.3.Старшинство операций
- •8.4.Дополнительные возможности программ yacc и lex
- •8.4.1.Обработка ошибок
- •8.5.Совместное использование lex и yacc
- •8.5.1.Кодировка лексем и интерфейс
- •8.5.2.Сборка yacc-программ
- •8.6.Советы по подготовке спецификаций
- •8.6.1.Стиль
- •8.6.2.Использование левой рекурсии
- •8.6.3.Уловки анализа лексики
- •8.6.4.Входной синтаксис yacc'а
- •8.7.Контроль
- •9.Модуль Заключение
- •10.Обеспечение лабораторного практикума
- •11.Дополнительная информация. Примеры
- •11.4.Пример простейшего интерпретатора формул
- •11.5.Простой пример
- •11.6.Более сложный пример
- •11.7.Генераторы лексических и синтаксических анализаторов
- •11.8.Генераторы лексических и синтаксических анализаторов на java
- •11.9.Пакеты для разработки компиляторов
- •Список сокращений
- •Литература
- •Приложения Приложение 1. Учебно–методическая карта дисциплины “Системное программное обеспечение. Синтаксические анализаторы”
- •Приложение 2. Вопросы для зачета по дисциплине “Системное программное обеспечение. Синтаксические анализаторы”
- •Приложение 3. Методические указания к лабораторным работам по дисциплине «Системное программное обеспечение. Синтаксические анализаторы»
- •Порядок выполнения работы:
- •Контрольные вопросы
- •Лексический анализатор lex. Анализ структуры программ
- •Краткая теория:
- •Рассмотрим примеры:
- •Порядок выполнения работы:
- •Контрольные вопросы
- •Лексический анализатор lex, синтаксический анализатор yacc. Алгебраические вычисления
- •Краткая теория:
- •Порядок выполнения работы:
- •Контрольные вопросы
- •Лексический анализатор lex и синтаксический анализатор yacc. Изображение геометрических фигур
- •Краткая теория:
- •Создание метафайла и работа сним
- •Порядок выполнения работы:
- •Контрольные вопросы
- •Приложение 4. Организация рейтингового контроля по дисциплине «Системное программное обеспечение. Синтаксические анализаторы»
5.2.Леволинейные и праволинейные грамматики. Автоматные грамматики
К регулярным, как уже было сказано, относятся два типа грамматик: леволинейные и праволинейные.
Леволинейные грамматики G(VT,VN,P,S), V = VNVT могут иметь правила двух видов: А→В или А→, где A,BVN, VT* .
В свою очередь, праволинейные грамматики G(VT,VN,P,S), V = VNVT могут иметь правила также двух видов: А→В или А→, где A,BVN, VT*.
Доказано, что эти два класса грамматик эквивалентны. Для любого регулярного языка, заданного праволинейной грамматикой, может быть построена леволи-нейная грамматика, определяющая эквивалентный язык; и наоборот — для любого регулярного языка, заданного леволинейной грамматикой, может быть построена праволинейная грамматика, задающая эквивалентный язык.
Разница между леволинейными и праволинейными грамматиками заключается в основном в том, в каком порядке строятся предложения языка: слева направо для леволинейных, либо справа налево для праволинейных. Поскольку предложения языков программирования строятся, как правило, в порядке слева направо, то в дальнейшем в разделе регулярных грамматик будет идти речь в первую очередь о леволинейных грамматиках.
Среди всех регулярных грамматик можно выделить отдельный класс — автоматные грамматики. Они также могут быть леволинейными и праволинейными.
Леволинейные автоматные грамматики G(VT,VN,P,S), V = VNVT могут иметь правила двух видов: A→Bt или A→t, где A.BVN, tVT.
Праволинейные автоматные грамматики G(VT,VN,P,S), V = VNVT могут иметь правила двух видов: A→tB или A→t, где A,BVN, tVT.
Разница между автоматными грамматиками и обычными регулярными грамматиками заключается в следующем: там, где в правилах обычных регулярных грамматик может присутствовать цепочка терминальных символов, в автоматных грамматиках может присутствовать только один терминальный символ. Любая автоматная грамматика является регулярной, но не наоборот — не всякая регулярная грамматика является автоматной.
Доказано, что классы обычных регулярных грамматик и автоматных грамматик почти эквивалентны. Это значит, что для любого языка, который задан регулярной грамматикой, можно построить автоматную грамматику, определяющую почти эквивалентный язык (обратное утверждение очевидно).
Чтобы классы автоматных и регулярных грамматик были полностью эквивалентны, в автоматных грамматиках разрешается дополнительное правило вида S→., где S — целевой символ грамматики. При этом символ S не должен встречаться в правых частях других правил грамматики. Тогда язык, заданный автоматной грамматикой G, может включать в себя пустую цепочку: L(G). В таком случае автоматные леволинейные и праволинейные грамматики, так же как обычные леволинейные и праволинейные грамматики, задают регулярные языки. Поскольку реально используемые языки, как правило, не содержат пустую цепочку символов, разница на пустую цепочку между этими двумя типами грамматик значения не имеет и правила вида S→. далее рассматриваться не будут.
Существует алгоритм, который позволяет преобразовать произвольную регулярную грамматику к автоматному виду — то есть построить эквивалентную ей автоматную грамматику. Этот алгоритм рассмотрен ниже. Он является исключительно полезным, поскольку позволяет существенно облегчить построение распознавателей для регулярных грамматик.