- •1. Классификация оснований и фундаментов. Факторы, определяющие выбор типа основания, вида и глубины заложения фундаментов.
- •2. Исходные данные для проектирования оснований и фундаментов. Нагрузки и воздействия. Данные инженерно-геологических изысканий.
- •3. Основные положения проектирования оснований и фундаментов по предельным состояниям.
- •4. Расчет оснований и фундаментов по первой группе предельных состояний. Условия необходимости расчета оснований и фундаментов по первой группе предельных состояний.
- •5. Расчет оснований и фундаментов по второй группе предельных состояний. Виды деформаций зданий. Причины развития неравномерных осадок оснований. Основные расчетные зависимости.
- •6. Виды и конструкции фундаментов, возводимых в открытых котлованах.
- •7. Назначение глубины заложения фундаментов с учетом различных факторов.
- •8. Расчет жестких фундаментов при действии центрально и внецентренно приложенной нагрузки.
- •9. Определение осадки фундаментов, возводимых в открытых котлованах.
- •10. Классификация свай по способам изготовления, форме поперечного и продольного сечения, материалу, условиям передачи нагрузки на грунты.
- •11.Конструктивные решения забивных свай. Способы погружения забивных свай.
- •13.Определение несущей способности висячих свай расчетными методами. Учет отрицательного трения по боковой поверхности свай.
- •15.Классификация свайных фундаментов по характеру расположения свай. Особенности совместной работы свай в кусте. Типы и конструкции ростверков.
- •16.Расчет свайных фундаментов с низким ростверком при действии центральных и внецентренных нагрузок по предельным состояниям.
- •17.Виды фундаментов глубокого заложения.
- •18.Конструкции и расчет свай-оболочек. Технологии устройства.
- •19.Устройство фундаментов глубокого заложения методом опускного колодца. Расчет опускных колодцев.
- •20.Кессонный метод устройства фундаментов глубокого заложения. Основы расчета.
- •21.Классификация методов преобразования строительных свойств грунтов.
- •22.Конструктивные методы улучшения условий работы грунтов: грунтовые подушки, шпунтовые ограждения, армирование грунтов, боковые пригрузки. Технологии устройства и основы расчета.
- •23.Поверхностное уплотнение грунтов катками, тяжелыми трамбовками, подводными взрывами. Выбор режима уплотнения. Контроль качества.
- •24.Устройство фундаментов в вытрамбованных котлованах. Определение несущей способности фундаментов в вытрамбованных котлованах.
- •25.Глубинное уплотнение грунтов песчаными и грунтовыми сваями. Уплотнение замачиванием.
- •26.Закрепление грунтов способами цементации, силикатизации, смолизации, битумизации. Электрохимическое закрепление грунтов.
- •27.Проектирование котлованов. Определение необходимости крепления откосов.
- •28.Определение устойчивости откосов методом кругло цилиндрических поверхностей скольжения.
- •29. Устройство ограждений котлованов методом "стена в грунте".
- •30. Мероприятия по предотвращению нарушения естественной структуры грунтов основания вследствие промерзания, размокания, перемятия, усадки.
- •31. Защита подвальных помещений, фунд-в и надфунд-ых констр-ий от подземных вод и сырости. Использование дренажа.
- •32. Виды структурно-неустойчивых грунтов (мерзлые, лессовые, набухающие, слабые водонасыщенные глинистые, насыпные, засоленные) и особенности их строит-ых свойств.
- •33. Принципы прокт-я оснований и фунд-ов на структурно-неустойчивых грунтах
- •34. Проект-е фунд-в на основаниях слож-х вечномерзлыми грунтами, с исп-ем I и II принципа.
- •35.Проектирование фундаментов, возводимых на просадочных лессовых грунтах. Методы строительства на просадочных грунтах.
- •38.Расчет оснований и фундаментов при реконструкции зданий и сооружений. Особенности определения расчетного сопротивления грунтов и расчета осадок оснований реконструируемых объектов.
- •39. Методы усиления оснований и фун-тов.
- •2.Увеличение прочности кладки фундамента.
- •3.Увеличение прочности грунтов в основании закреплением.
- •40. Устройство фундаментов под конструкции и оборудование внутри действующих предприятий и вблизи существующих зданий. Конструктивные решения.
- •41. Деформации зданий при проведении рядом с ними строительных работ, передаче на основание дополнительных нагрузок.
- •42. Методы строительства на слабых водонасыщенных глинистых грунтах. Особенности расчета оснований, сложенных слабыми водонасыщенными глинистыми грунтами.
8. Расчет жестких фундаментов при действии центрально и внецентренно приложенной нагрузки.
Центрально нагруженный фундамент. Центрально нагруженным считают фундамент, у которого равнодействующая внешних нагрузок проходит через центр площади его подошвы, реактивное давление грунта по подошве жесткого центрально нагруженного фундамента принимается равномерно распределенным интенсивностью
P
n=(NoIi+GflI+GgII)/A
где
—
расчетная верти-
кальная нагрузка
на уровце обреза фундамента;
и
— расчетные значения
веса фундамента и грунта на его уступах
(рис. 10.12); А —
площадь подошвы фундамента.
В предварительных расчетах вес грунта и фундамента в объеме параллелепипеда ABCD, в основании которого лежит неизвестная площадь подошвы А9 определяется приближенно из выражения
(10.5)
где
—
среднее значение удельного веса
фундамента и грунта на его уступах,
принимаемое обычно равным 20 кН/м3;
d—глубина
заложения фундамента, м.
Приняв
и
учтя (10.5), из уравнения (10.4) получим фор-
мулу для определения необходимой площади подошвы фундамента
(10.6)
Рассчитав площадь подошвы фундамента, находят его ширину Ь. Ширину ленточного фундамента, для которого нагрузки определяют на 1 м длины, находят как b—Ajl. У фундаментов с прямоугольной подошвой задаются отношением сторон n — 1/b, тогда ширина
подошвы
, для фундаментов с круглой
подошвой
Поскольку значение
R
в формуле
(10.6) также неизвестно, искомую величину
А находят
из совместного решения уравнений (9.5) и
(10.4) аналитическим или графическим
методом. При решении графическим методом
формулу (10.4) записывают в виде зависимости
,
которая в общем случае является
гиперболой:
(10.7)
Формула (9.5) является
уравнением прямой
Если построить графики по этим формулам, то пересечение полученной кривой и прямой даст искомое значение Ь, соответст вующее расчетному давлению. Соответствующие расчеты и постро ения будут показаны ниже в примере 10.1. _
После вычисления значения Ь принимают размеры фундамента с учетом модульности и унификации конструкций и проверяют давление по его подошве по формуле (10.4). Найденная величина рп
должна не только удовлетворять условию (10.3), но и быть по возможности близка к значению расчетного сопротивления грунта Л. Наиболее экономичное решение будет в случае их равенства.
Внецентренно нагруженный фундамент. Внецентренно нагруженным считают фундамент, у которого равнодействующая внешних нагрузок не проходит через центр тяжести площади его подошвы. Такое нагружение фундамента является следствием передачи на него момента или горизонтальной составляющей нагрузки либо результатом одностороннего давления грунта на его боковую поверхность, как, например, у фундамента под наружную стену заглубленного помещения.
При расчете давление по подошве внецентренно нагруженного фундамента принимают изменяющимся по линейному закону, а его краевые значения при действии момента сил относительно одной из главных осей определяют по формуле (5.7), как для случая внецент-ренного сжатия. Подстановкой значений A — lb> W-b2lj6 и M=Nne формула (5.7) приводится к следующему более удобному для расчета виду:
(10.8)
где Nn —- суммарная вертикальная нагрузка на основание, включая
вес фундамента и грунта на его уступах; А — площадь подошвы фундамента; е — эксцентриситет равнодействующей относительно центра тяжести подошвы; Ъ — размер подошвы фундамента в плоскости действия момента,
Эпюра давления грунта, рассчитанная по формуле (10.8), может быть однозначной и двузнач-.ной, как это показано на рис. 10.13. Как правило, размеры подошвы фундамента стараются подобрать таким образом, чтобы эпюра была однозначной, т. е. чтобы не было отрыва подошвы фундамента от основания. В противном случае в зазор между подошвой и грунтом может проникнуть вода, что нежелательно, поскольку это может привести к ухудшению свойств грунтов основания. Исключение допускается для фундаментов в стесненных
у
словиях,
когда отсутствует возможность развить
их в нужном направлении, и для фундаментов,
нагруженных знакопеременными моментами,
когда нельзя подобрать размеры и форму
подошвы, по которой действовали бы
только сжимающие напряжения.
Поскольку при внецентрен-ном нагружении относительно одной из центральных осей максимальное давление на осно вание действует только под краем фундамента, при подборе размеров подошвы фундамента его допускается принимать на 20% больше расчетного сопротивления грунта, т. е.
(10.9)
Одновременно среднее давление по подошве фундамента, определяемое к&кри=Ми1А, должно удовлетворять условию (10.3).
В тех случаях, когда точка приложения равнодействующей внешних сил смещена относительно обеих осей инерции прямоугольной подошвы фундамента, как это показано на рис. 10.14, давление под ее угловыми точками находят по формуле
(10.10)
Поскольку в этом случае максимальное давление действует только в одной точке подошвы фундамента, допускается, чтобы его значение, найденное по формуле (10.10), удовлетворяло условию
(10.11)
Одновременно проверяются и условия.(10.3) и (10.9).
На практике задачу подбора размеров подошвы внецентренно нагруженного фундамента решают следующим образом. Сначала принимают, что действующая нагрузка приложена центрально, подбирают соответствующие размеры подошвы из условия (10.3), а затем уточняют их расчетом на внецентренную нагрузку, соблюдая изложенные выше требования и добиваясь удовлетворения условий (10.9) и (10.11). При этом иногда смещают подошву фундамента в сторону эксцентриситета так, чтобы точка приложения равнодействующей всех сил совпадала с центром тяжести подошвы фундамента (рис. 10.14, б).
