
- •Введение. Немного теории
- •1 Источники напряжения
- •2 Электрические компоненты
- •3 Величины, применяемые при работе с электричеством. Законы Ома и Кирхгофа
- •4 Новые понятия
- •5 Пассивные компоненты электронных схем
- •5.1 Резисторы
- •5.2 Конденсаторы
- •5.3 Катушки индуктивности и дроссели
- •5.4 Трансформаторы и пьезотрансформаторы
- •6 Активные компоненты (полупроводники)
- •6.1 Диэлектрики, проводники, сверхпроводники и полупроводники
- •6.1.1 Диапазоны энергий и распределение носителей заряда в них
- •6.2 Диод
- •6.3 Общие сведения о полупроводниковых диодах
- •6.4 Конструкции и простейшие способы изготовления полупроводниковых диодов
- •6.5 Разновидности диодов
- •6.5.1 Выпрямительные диоды
- •6.5.2 Импульсные диоды
- •6.5.3 Варикапы
- •6.5.4 Стабилитроны и стабисторы
- •6.5.5 Светодиоды
- •6.5.6 Полупроводниковые лазеры
- •6.5.7 Фотодиоды
- •6.6 Эффекты полупроводников
- •6.6.1 Эффект Ганна
- •6.6.2 Эффекты Пельтье и Зеебека
- •6.6.3 Туннельный эффект
- •6.6.4 Эффект Холла
- •6.7 Биполярные транзисторы
- •6.7.1 Общие сведения о транзисторах
- •6.7.2 Конструкция некоторых биполярных транзисторов
- •6.7.3 Принцип действия биполярных транзисторов
- •6.7.4 Схемы включения биполярных транзисторов
- •6.7.5 Биполярные фототранзисторы
- •6.8 Полевые транзисторы с управляющим переходом
- •6.8.1 Конструкция полевых транзисторов с управляющим переходом
- •6.8.2 Полевые транзисторы с изолированным затвором
- •6.8 Биполярные транзисторы с изолированными затворами
- •6.8.1 Общие сведения о бтиз
- •6.8.2 Конструкция и принцип действия бтиз
- •6.9 Тиристоры
- •6.9.1 Общая информация о тиристорах
- •6.9.2. Динисторы
- •6.9.3 Тринисторы
- •6.9.4 Запираемые тиристоры
- •6.9.5 Симисторы
- •6.10 Интегральные микросхемы
- •6.10.1 Определения гост 17021—88
- •6.10.2 Классификация микросхем
- •6.10.3 Технология изготовления пленочных имс
- •6.10.4 Гибридные интегральные микросхемы
- •6.10.5 Полупроводниковые микросхемы
- •7.Конструирование радиоэлектронных устройств
- •7.1 Изготовление печатных плат
- •7.2 Монтаж компонентов на печатной плате
- •7.2.1 Шелкография или маркировка.
- •7.2.2 Монтаж компонентов
- •8 Устройства отображения информации
- •8.1 Индикаторы
- •8.2 Светодиодные индикаторы
- •8.3 Жидкокристаллические индикаторы
- •8.4 Общие сведения об электронно-лучевых трубках
- •8.5 Жидкокристаллические дисплеи и панели
- •8.5.1 Общие сведения о жидкокристаллических дисплеях
- •8.5.2 Электролюминесцентная подсветка жидкокристаллических дисплеев
- •8.5 3 Светодиодная подсветка жидкокристаллических дисплеев
- •8.5.4 Время отклика жидкокристаллических дисплеев и влияние температуры на их работу
- •8.6 Плазменные панели
- •8.7 Дисплеи на углеродных нанотрубках
- •8.8 Сенсорные экраны и классификация их типов
- •8.9 Голографические системы
- •9 Простейшие схемы электроники
- •9.1 Усилители электрических сигналов
- •Классификация усилительных устройств.
- •9.2 Генераторы
- •9.3 Дискретные устройства
- •Список литературы
5.3 Катушки индуктивности и дроссели
Катушки индуктивности – это пассивные компоненты, предназначенные для накопления энергии в магнитном поле, и состоящие из проводов, уложенных в обмотки, внутрь которых обычно помещен магнитопровод.
Магнитопроводы, выполненные из ферромагнетиков, используют для увеличения индуктивности катушек, а выполненные из диамагнетиков уменьшают их индуктивность.
Обмотки катушек индуктивности выполняют проводами круглого или прямоугольного сечений, а обмотки некоторых мощных высокочастотных катушек – медными или посеребрёнными лентами. Катушки индуктивности без магнитопроводов и с магнитопроводами из диамагнетиков применяют только при протекании по обмоткам токов высокой частоты.
Рисунок 17 – Катушки индуктивности
Для расчёта индуктивности однослойной катушки цилиндрической формы без магнитопровода при укладке провода виток к витку можно применить следующую формулу:
где d – внешний диаметр обмотки, мм;
W – число витков обмотки;
ℓ – длина обмотки, мм.
Число витков такой катушки индуктивности определим согласно выражению:
Индуктивность тороидальной катушки без магнитопровода найдём по формуле:
где b – диаметр одного полного витка (или, то же самое, диаметр поперечного сечения катушки), мм;
D – усреднённый диаметр тора, мм.
Дроссели пульсирующего тока – это катушки индуктивности, предназначенные для пропускания постоянной составляющей тока и задерживания его переменной составляющей. Такие дроссели используют, например, в фильтрах постоянного напряжения источников питания.
Рисунок 18 – Дроссели
Дроссели переменного тока нужны для создания индуктивного сопротивления в цепях, по которым протекает сугубо переменный ток. Эти дроссели применяют, например, в качестве компонентов колебательных систем резонансных и квазирезонансных импульсных источников питания. На пути протекания магнитных потоков в сердечники описываемых дросселей часто вводят немагнитные зазоры, благодаря которым по обмоткам дросселей можно пропускать большие токи без вхождения магнитопроводов в насыщение.
5.4 Трансформаторы и пьезотрансформаторы
Трансформаторами называют статические компоненты, предназначенные для преобразования электрической энергии одной величины в электрическую энергию другой величины. Трансформация возможна только переменного напряжения. Конструктивно трансформаторы имеют магнитопроводы, на которые укладывают провода обмоток. Типы и марки магнитопроводов выбирают в зависимости от частоты, заданного температурного диапазона, скважности и прочего.
Магнитопроводы высокочастотных трансформаторов изготавливают обычно из ферритов, низкочастотных – из трансформаторных сталей и пермаллоев. Для обеспечения высокого напряжения пробоя между обмотками прокладывают изоляцию. Ту обмотку двухобмоточного трансформатора, на которую подают напряжение, называют первичной, а ту, с которой снимают напряжение, – вторичной. Если переменное напряжение на первичной обмотке меньше, чем напряжение на вторичной обмотке, то такой трансформатор называют повышающим. А если наоборот – то называют понижающим. Если часть энергии из первичной обмотки поступает во вторичную обмотку не через магнитную цепь, а по электрическому соединению, то имеем дело с автотрансформатором.
Рисунок 19 – Типовой трансформатор питания
Различают сигнальные трансформаторы и трансформаторы питания. Сигнальные трансформаторы предназначены для передачи сигналов с минимальными искажениями. Бывает, что сигнальные трансформаторы задействуют для гальванической развязки цепей. Трансформаторы питания нужны в устройствах, обеспечивающих электропитание аппаратуры, которая по каким-либо причинам не может быть подключена непосредственно к питающей сети, например, ввиду несоответствия величин напряжений.
Рисунок 20 – Принцип работы трансформатора и схема электрическая
Промышленность также выпускает пьезотрансформаторы. Эти компоненты не имеют обмоток, а их принцип действия основан на использовании пьезоэффекта.
Схематически устройство пьезотрансформатора изображено на рисунке21, поясняющем, что он представляет собой пьезоэлектрический преобразователь в виде четырехполюсника, имеющего только электрические вход и выход.
Рисунок 21 - Пьезоэлектрический трансформатор. Принцип действия
Действие пьезотрансформатора основано на использовании как прямого, так и обратного пьезоэффектов. Электрическое напряжение, приложенное к входным электродам пьезотрансформатора, в результате обратного пьезоэффекта вызывает деформацию всего объёма пьезоэлектрика и на выходных электродах возникает электрическое (вторичное) напряжение как следствие прямого пьезоэффекта. В пьезотрансформаторе происходит как бы двойное преобразование энергии - электрической в механическую, а затем механической в электрическую. Как и электромагнитный трансформатор, пьезотрансформатор используют для преобразования электрического напряжения. Подбором размеров электродов и их расположения можно получать различные значения коэффициента трансформации. Пьезотрансформаторы обычно используют в резонансном режиме, при котором достигаются большие значения коэффициента трансформации (порядка нескольких сотен). Пьезотрансформаторы используют в высоковольтных источниках вторичного электропитания.
Пьезотрансформатор состоит из кристалла вещества обладающего пьезоэффектом, в который вожжены серебряные электроды, способные к обратимым механическим деформациям под влиянием на него электрического поля. К таким веществам относят титанат бария, кварц, турмалин и прочие. Пьезотрансформаторы могут функционировать в узкой полосе частот, на которой можно наблюдать резонансные явления. Крепление пьезотрансформаторов осуществляют мягкими кронштейнами или скобами в тех местах, в которых амплитуда изгиба пьезопластин минимальна. Наибольшая мощность пьезотрансформаторов обычно не велика и часто составляет всего от 5Вт до 30Вт.