
- •Введение. Немного теории
- •1 Источники напряжения
- •2 Электрические компоненты
- •3 Величины, применяемые при работе с электричеством. Законы Ома и Кирхгофа
- •4 Новые понятия
- •5 Пассивные компоненты электронных схем
- •5.1 Резисторы
- •5.2 Конденсаторы
- •5.3 Катушки индуктивности и дроссели
- •5.4 Трансформаторы и пьезотрансформаторы
- •6 Активные компоненты (полупроводники)
- •6.1 Диэлектрики, проводники, сверхпроводники и полупроводники
- •6.1.1 Диапазоны энергий и распределение носителей заряда в них
- •6.2 Диод
- •6.3 Общие сведения о полупроводниковых диодах
- •6.4 Конструкции и простейшие способы изготовления полупроводниковых диодов
- •6.5 Разновидности диодов
- •6.5.1 Выпрямительные диоды
- •6.5.2 Импульсные диоды
- •6.5.3 Варикапы
- •6.5.4 Стабилитроны и стабисторы
- •6.5.5 Светодиоды
- •6.5.6 Полупроводниковые лазеры
- •6.5.7 Фотодиоды
- •6.6 Эффекты полупроводников
- •6.6.1 Эффект Ганна
- •6.6.2 Эффекты Пельтье и Зеебека
- •6.6.3 Туннельный эффект
- •6.6.4 Эффект Холла
- •6.7 Биполярные транзисторы
- •6.7.1 Общие сведения о транзисторах
- •6.7.2 Конструкция некоторых биполярных транзисторов
- •6.7.3 Принцип действия биполярных транзисторов
- •6.7.4 Схемы включения биполярных транзисторов
- •6.7.5 Биполярные фототранзисторы
- •6.8 Полевые транзисторы с управляющим переходом
- •6.8.1 Конструкция полевых транзисторов с управляющим переходом
- •6.8.2 Полевые транзисторы с изолированным затвором
- •6.8 Биполярные транзисторы с изолированными затворами
- •6.8.1 Общие сведения о бтиз
- •6.8.2 Конструкция и принцип действия бтиз
- •6.9 Тиристоры
- •6.9.1 Общая информация о тиристорах
- •6.9.2. Динисторы
- •6.9.3 Тринисторы
- •6.9.4 Запираемые тиристоры
- •6.9.5 Симисторы
- •6.10 Интегральные микросхемы
- •6.10.1 Определения гост 17021—88
- •6.10.2 Классификация микросхем
- •6.10.3 Технология изготовления пленочных имс
- •6.10.4 Гибридные интегральные микросхемы
- •6.10.5 Полупроводниковые микросхемы
- •7.Конструирование радиоэлектронных устройств
- •7.1 Изготовление печатных плат
- •7.2 Монтаж компонентов на печатной плате
- •7.2.1 Шелкография или маркировка.
- •7.2.2 Монтаж компонентов
- •8 Устройства отображения информации
- •8.1 Индикаторы
- •8.2 Светодиодные индикаторы
- •8.3 Жидкокристаллические индикаторы
- •8.4 Общие сведения об электронно-лучевых трубках
- •8.5 Жидкокристаллические дисплеи и панели
- •8.5.1 Общие сведения о жидкокристаллических дисплеях
- •8.5.2 Электролюминесцентная подсветка жидкокристаллических дисплеев
- •8.5 3 Светодиодная подсветка жидкокристаллических дисплеев
- •8.5.4 Время отклика жидкокристаллических дисплеев и влияние температуры на их работу
- •8.6 Плазменные панели
- •8.7 Дисплеи на углеродных нанотрубках
- •8.8 Сенсорные экраны и классификация их типов
- •8.9 Голографические системы
- •9 Простейшие схемы электроники
- •9.1 Усилители электрических сигналов
- •Классификация усилительных устройств.
- •9.2 Генераторы
- •9.3 Дискретные устройства
- •Список литературы
8.7 Дисплеи на углеродных нанотрубках
Углеродной нанотрубкой именуют образование, имеющее длину от нескольких десятков нанометров до нескольких десятков миллиметров, похожее на полую трубу радиусом примерно в несколько нанометров, у которой стенки сформированы углеродом и обладают толщиной всего в один атом. Углеродные молекулы нанотрубок, имеющие сферическую форму, называют фуллеренами, а имеющие форму длинных трубок, концы которых имеют окончание в виде гладких полусфер, именуют тубеленами.
В вакууме, когда тубелены, длиной около десятка нанометров, с острыми, а не полусферическими, концами будут помещены в электрическое поле, на них возможно возникновение автоэлектронной эмиссии. Нанотрубки размещают на подложке, выполненной обычно из кварца или кремния, в вакууме под давлением 1,32 • 10–10 атм. Плотность тока эмиссии катодов достигает 4 мА / см2. Нанотрубки размещают в виде матрицы. Излучение нанотрубок попадает на три люминофора, которые начинают светиться красным, синим и зелёным. Этот свет с видимым глазом человека спектром проникает через прозрачную, чаще всего стеклянную пластину, который и воспринимает пользователь.
Выполненные таким образом цветные панели и дисплеи на углеродных нанотрубках обладают высокой механической прочностью, высокой яркостью вплоть до 8000 кд / м2, углом обзора до 160°, высоким быстродействием и возможностью непрерывной работы в течение многих тысяч часов. Нанотрубки, кроме того, применяют для изготовления светодиодов, транзисторов, процессоров, прозрачных электродов, люминесцентных ламп и прочих, которые могут работать в условиях радиации. Теоретически возможно создание компонентов на нанотрубках, выдерживающих нагрев до температуры примерно в 1000 °C.
8.8 Сенсорные экраны и классификация их типов
Сенсорный экран – это устройство ввода и вывода информации посредством чувствительного к нажатиям и жестам дисплея. Как известно, экраны современных устройств не только выводят изображение, но и позволяют взаимодействовать с устройством. Изначально для подобного взаимодействия использовались всем знакомые кнопки, потом появился не менее известный манипулятор «мышь», существенно упростивший манипуляции с информацией на дисплее компьютера. Однако «мышь» для работы требует горизонтальной поверхности и для мобильных устройств не очень подходит. Вот тут на помощь приходит дополнение к обычному экрану – Touch Screen, который так же известен под названиями Touch Panel, сенсорная панель, сенсорная пленка. То есть, по сути, сенсорный элемент экраном не является – это дополнительное устройство, устанавливаемое поверх дисплея снаружи, защищающее его и служащее для ввода координат прикосновения к экрану пальцем или иным предметом.
Использование
Сегодня сенсорные экраны находят широкое применение в мобильных электронных устройствах. Изначально тачскрин применялся в конструкции карманных персональных компьютеров (КПК, PDA), теперь первенство держат коммуникаторы, мобильные телефоны, плееры и даже фото- и видеокамеры. Однако технология управления пальцем через виртуальные кнопки на экране оказалась настолько удобной, что ею оснащаются почти все платежные терминалы, многие современные банкоматы, электронные справочные киоски и другие устройства, используемые в общественных местах.
Рисунок
8.3 - Ноутбук с сенсорным экраном
Нельзя не отметить и ноутбуки, некоторые модели которых оснащаются поворотным сенсорным дисплеем, что придает мобильному компьютеру не только более широкую функциональность, но и большую гибкость в управлении им на улице и на весу.
Рисунок 8.4 – Ноут бук с поворотным экраном – «трасформер»
К сожалению, пока подобных моделей ноутбуков, называемых в народе «трансформеры», не так много, но они есть.
В целом, технологию сенсорного экрана можно охарактеризовать как наиболее удобную в случае, когда необходим мгновенный доступ к управлению устройством без предварительной подготовки и с потрясающей интерактивностью: элементы управления могут сменять друг друга в зависимости от активируемой функции. Тот, кто хоть раз работал с сенсорным устройством, сказанное выше прекрасно понимает.
Типы сенсорных экранов
Всего на сегодня известно несколько типов сенсорных панелей. Естественно, что каждая из них обладает своими достоинствами и недостатками. Выделим основные четыре конструкции:
Резистивные
Ёмкостные
Проекционно-ёмкостные
С определением поверхностно-акустических волн
Рисунок 8.5 – Резистивный сенсорный экран
Кроме указанных экранов, применяются матричные экраны и инфракрасные, но ввиду их низкой точности их область применения крайне ограничена.
Резистивные
Резистивные сенсорные панели относятся к самым простым устройствам. По своей сути, такая панель состоит из проводящей подложки и пластиковой мембраны, обладающих определенным сопротивлением. При нажатии на мембрану происходит её замыкание с подложкой, а управляющая электроника определяет возникающее при этом сопротивление между краями подложки и мембраны, вычисляя координаты точки нажатия.
Преимущество резистивного экрана в его дешевизне и простоте устройства. Они обладают отличной стойкостью к загрязнениям. Основным достоинством резистивной технологии является чувствительность к любым прикосновениям: можно работать рукой (в том числе в перчатках), стилусом (пером) и любым другим твердым тупым предметом (например, верхним концом шариковой ручки или углом пластиковой карты). Однако имеются и достаточно серьезные недостатки: резистивные экраны чувствительны к механическим повреждениям, такой экран легко поцарапать, поэтому зачастую дополнительно приобретается специальная защитная пленка, защищающая экран. Кроме того, резистивные панели не очень хорошо работают при низких температурах, а также обладают невысокой прозрачностью – пропускают не более 85% светового потока дисплея.
Применение
КПК
Коммуникаторы
Сотовые телефоны
POS-терминалы
Tablet PC
Промышленность (устройства управления)
Медицинское оборудование
Рисунок
8.6 - Использование пера с сенсорным
экраном
Рисунок
8.7.- Коммуникатор
Ёмкостные
Технология ёмкостного сенсорного экрана основана на принципе того, что предмет большой ёмкости (в данном случае человек) способен проводить электрический ток. Суть работы ёмкостной технологии заключается в нанесении на стекло электропроводного слоя, при этом на каждый из четырех углов экрана подается слабый переменный ток. Если прикоснуться к экрану заземленным предметом большой емкости (пальцем), произойдет утечка тока. Чем ближе точка касания (а значит, и утечки) к электродам в углах экрана, тем больше сила тока утечки, которая и регистрируется управляющей электроникой, вычисляющей координаты точки касания.
Рисунок 8.8 – Сенсорный ёмкостный экран
Ёмкостные экраны очень надежны и долговечны, их ресурс составляет сотни миллионов нажатий, они отлично противостоят загрязнениям, но только тем, которые не проводят электрический ток. По сравнению с резистивными они более прозрачны. Однако недостатками является все же возможность повреждения электропроводного покрытия и нечувствительность к прикосновениям непроводящими предметами, даже руками в перчатках.
Рисунок
8.9 - Информационный киоск
Применение
В охраняемых помещениях
Информационные киоски
Некоторые банкоматы
Проекционно-ёмкостные
Проекционно-ёмкостные экраны основаны на измерении ёмкости конденсатора, образующегося между телом человека и прозрачным электродом на поверхности стекла, которое и является в данном случае диэлектриком. Вследствие того, что электроды нанесены на внутренней поверхности экрана, такой экран крайне устойчив к механическим повреждениям, а с учетом возможности применения толстого стекла, проекционно-ёмкостные экраны можно применять в общественных местах и на улице без особых ограничений. К тому же этот тип экрана распознает нажатие пальцем в перчатке.
Рисунок
8.10 - Платежный терминал
Данные экраны достаточно чувствительны и отличают нажатия пальцем и проводящим пером, а некоторые модели могут распознавать несколько нажатий (мультитач). Особенностями проекционно-ёмкостного экрана являются высокая прозрачность, долговечность, невосприимчивость к большинству загрязнений. Минусом такого экрана является не очень высокая точность, а также сложность электроники, обрабатывающей координаты нажатия.
Рисунок
8.11 - Apple iPhone
Применение
Электронные киоски на улицах
Платежные терминалы
Банкоматы
Тачпэды ноутбуков
iPhone
С определением поверхностно-акустических волн
Суть работы сенсорной панели с определением поверхностно-акустических волн заключается в наличии ультразвуковых колебаний в толще экрана. При прикосновении к вибрирующему стеклу, волны поглощаются, при этом точка прикосновения регистрируется датчиками экрана. Плюсами технологии можно назвать высокую надежность и распознавание нажатия (в отличие от ёмкостных экранов). Минусы заключаются в слабой защищенности от факторов окружающей среды, поэтому экраны с поверхностно-акустическими волнами нельзя применять на улице, а кроме того, такие экраны боятся любых загрязнений, блокирующих их работу. Применяются редко.
Другие, редкие типы сенсорных экранов
Оптические экраны. Инфракрасным светом подсвечивают стекло, в результате прикосновения к такому стеклу происходит рассеивание света, которое обнаруживается датчиком.
Индукционные экраны. Внутри экрана расположена катушка и сетка чувствительных проводов, реагирующих на прикосновение активным пером, питающимся от электромагнитного резонанса. Логично, что такие экраны реагируют на нажатия только специальным пером. Применяются в дорогих графических планшетах.
Тензометрические – реагируют на деформацию экрана. Такие экраны имеют малую точность, зато очень прочны.
Сетка инфракрасных лучей – одна из самых первых технологий, позволяющих распознавать прикосновения к экрану. Сетка состоит из множества светоизлучателей и приемников, расположенных по сторонам экрана. Реагирует на блокировку соответствующих лучей предметами, на основании чего и определяет координаты нажатия.
Рисунок
8.12 - Применение индукционного экрана в
ноутбуке
Мультитач (Multi-touch)
Мультитач, о котором все так много говорят и популярность которого только растет, не является типом сенсорного экрана. По своей сути, технология множественного нажатия – что является вольным переводом словосочетания multi-touch – это дополнение к сенсорному экрану (чаще всего построенному по проекционно-ёмкостному принципу), позволяющее экрану распознавать несколько точек прикосновения к нему. В результате мультитач-экран становится способным к распознаванию жестов. Вот лишь некоторые из них:
Сдвинуть два пальца вместе – уменьшение изображения (текста)
Раздвинуть два пальца в стороны – увеличение (Zoom)
Движение несколькими пальцами одновременно – прокрутка текста, страницы в браузере
Вращение двумя пальцами на экране – поворот изображения (экрана)