
- •Введение. Немного теории
- •1 Источники напряжения
- •2 Электрические компоненты
- •3 Величины, применяемые при работе с электричеством. Законы Ома и Кирхгофа
- •4 Новые понятия
- •5 Пассивные компоненты электронных схем
- •5.1 Резисторы
- •5.2 Конденсаторы
- •5.3 Катушки индуктивности и дроссели
- •5.4 Трансформаторы и пьезотрансформаторы
- •6 Активные компоненты (полупроводники)
- •6.1 Диэлектрики, проводники, сверхпроводники и полупроводники
- •6.1.1 Диапазоны энергий и распределение носителей заряда в них
- •6.2 Диод
- •6.3 Общие сведения о полупроводниковых диодах
- •6.4 Конструкции и простейшие способы изготовления полупроводниковых диодов
- •6.5 Разновидности диодов
- •6.5.1 Выпрямительные диоды
- •6.5.2 Импульсные диоды
- •6.5.3 Варикапы
- •6.5.4 Стабилитроны и стабисторы
- •6.5.5 Светодиоды
- •6.5.6 Полупроводниковые лазеры
- •6.5.7 Фотодиоды
- •6.6 Эффекты полупроводников
- •6.6.1 Эффект Ганна
- •6.6.2 Эффекты Пельтье и Зеебека
- •6.6.3 Туннельный эффект
- •6.6.4 Эффект Холла
- •6.7 Биполярные транзисторы
- •6.7.1 Общие сведения о транзисторах
- •6.7.2 Конструкция некоторых биполярных транзисторов
- •6.7.3 Принцип действия биполярных транзисторов
- •6.7.4 Схемы включения биполярных транзисторов
- •6.7.5 Биполярные фототранзисторы
- •6.8 Полевые транзисторы с управляющим переходом
- •6.8.1 Конструкция полевых транзисторов с управляющим переходом
- •6.8.2 Полевые транзисторы с изолированным затвором
- •6.8 Биполярные транзисторы с изолированными затворами
- •6.8.1 Общие сведения о бтиз
- •6.8.2 Конструкция и принцип действия бтиз
- •6.9 Тиристоры
- •6.9.1 Общая информация о тиристорах
- •6.9.2. Динисторы
- •6.9.3 Тринисторы
- •6.9.4 Запираемые тиристоры
- •6.9.5 Симисторы
- •6.10 Интегральные микросхемы
- •6.10.1 Определения гост 17021—88
- •6.10.2 Классификация микросхем
- •6.10.3 Технология изготовления пленочных имс
- •6.10.4 Гибридные интегральные микросхемы
- •6.10.5 Полупроводниковые микросхемы
- •7.Конструирование радиоэлектронных устройств
- •7.1 Изготовление печатных плат
- •7.2 Монтаж компонентов на печатной плате
- •7.2.1 Шелкография или маркировка.
- •7.2.2 Монтаж компонентов
- •8 Устройства отображения информации
- •8.1 Индикаторы
- •8.2 Светодиодные индикаторы
- •8.3 Жидкокристаллические индикаторы
- •8.4 Общие сведения об электронно-лучевых трубках
- •8.5 Жидкокристаллические дисплеи и панели
- •8.5.1 Общие сведения о жидкокристаллических дисплеях
- •8.5.2 Электролюминесцентная подсветка жидкокристаллических дисплеев
- •8.5 3 Светодиодная подсветка жидкокристаллических дисплеев
- •8.5.4 Время отклика жидкокристаллических дисплеев и влияние температуры на их работу
- •8.6 Плазменные панели
- •8.7 Дисплеи на углеродных нанотрубках
- •8.8 Сенсорные экраны и классификация их типов
- •8.9 Голографические системы
- •9 Простейшие схемы электроники
- •9.1 Усилители электрических сигналов
- •Классификация усилительных устройств.
- •9.2 Генераторы
- •9.3 Дискретные устройства
- •Список литературы
6.8 Биполярные транзисторы с изолированными затворами
6.8.1 Общие сведения о бтиз
Биполярный транзистор с изолированным затвором (БТИЗ) – по-английски «insulated gate bipolar transistor» или сокращённо IGBT – это компонент, управление которым, как полевым транзистором, осуществляют напряжением, а протекание тока по силовым выводам коллектора и эмиттера обусловлено, как у биполярного транзистора, движением носителей зарядов обоих типов. В едином технологическом цикле в полупроводнике организуют структуры мощного биполярного p-n-p транзистора, которым управляет МОП-транзистор малой мощности, имеющий n-канал. Выводы БТИЗ носят названия затвора, коллектора и эмиттера.
Достоинства: возможность коммутации токов в тысячи ампер и допустимость прикладывания постоянного напряжения коллектор-эмиттер в несколько киловольт к запертому транзистору. Если напряжение коллектор-эмиттер запертого БТИЗ превышает приблизительно 600В, то падающее на выводах коллектор-эмиттер открытого БТИЗ напряжение насыщения обычно меньше по сравнению с полевыми транзисторами той же ценовой группы.
Недостатки: даже наименее инерционные БТИЗ предназначены для функционирования на много более низкой частоте, нежели полевые транзисторы, причём чем выше частота, тем ниже максимально допустимая амплитуда тока коллектора транзистора. При этом БТИЗ по частотным свойствам подразделяют на группы. При изготовлении БТИЗ помимо необходимого биполярного p-n-p транзистора возникает ещё и паразитный биполярный n-p-n транзистор, и они совместно образуют структуру тиристора. Это отражено на эквивалентной схеме БТИЗ, изображённой на рисунке 55, где компонент VT2 – это паразитный транзистор.
Рисунок 55 – Структура транзистора IGBT
При высокой скорости переключения компонента или при протекании по выводам коллектор-эмиттер короткого импульса тока большой амплитуды и прочего структура тиристора в БТИЗ может самопроизвольно перейти в открытое состояние. При этом БТИЗ теряет управляемость, и транзистор, как и устройство, в котором он работал, могут выйти из строя.
6.8.2 Конструкция и принцип действия бтиз
Простейшая структура БТИЗ планарного исполнения отражена на рисунке 56.
Из рисунка видно, что на металлическом основании, к которому присоединён вывод коллектора, расположена подложка p+, а на ней находятся два n-слоя. Эти слои понижают коэффициент усиления p-n-p структуры мощного биполярного транзистора. Ближайший к подложке n+-слой необходим для снижения вероятности самопроизвольного отпирания тиристорной структуры.
Рисунок 56 – Структура транзистора IGBT
Более удалённый от подложки n–-слой претворяют в жизнь эпитаксиальным наращиванием или другими способами. Подложка p+ играет роль эмиттера биполярного p-n-p транзистора, область n–-слоя – его базы, а область p-типа, к которой подключают вывод эмиттера БТИЗ, – его коллектора. Над n–-слоем расположена p-область, которая выполняет функцию канала управляющего МОП-транзистора, затвор которого выполнен из поликристаллического кремния и изолирован от полупроводника эмиттерной области слоем оксида SiO2. В этой канальной p-области размещены n+-зоны, которые выступают в качестве стока МОП-транзистора, а его истоком служит n–-область. Затвор структуры МОП-транзистора соединён с выводом затвора БТИЗ.