
- •Введение. Немного теории
- •1 Источники напряжения
- •2 Электрические компоненты
- •3 Величины, применяемые при работе с электричеством. Законы Ома и Кирхгофа
- •4 Новые понятия
- •5 Пассивные компоненты электронных схем
- •5.1 Резисторы
- •5.2 Конденсаторы
- •5.3 Катушки индуктивности и дроссели
- •5.4 Трансформаторы и пьезотрансформаторы
- •6 Активные компоненты (полупроводники)
- •6.1 Диэлектрики, проводники, сверхпроводники и полупроводники
- •6.1.1 Диапазоны энергий и распределение носителей заряда в них
- •6.2 Диод
- •6.3 Общие сведения о полупроводниковых диодах
- •6.4 Конструкции и простейшие способы изготовления полупроводниковых диодов
- •6.5 Разновидности диодов
- •6.5.1 Выпрямительные диоды
- •6.5.2 Импульсные диоды
- •6.5.3 Варикапы
- •6.5.4 Стабилитроны и стабисторы
- •6.5.5 Светодиоды
- •6.5.6 Полупроводниковые лазеры
- •6.5.7 Фотодиоды
- •6.6 Эффекты полупроводников
- •6.6.1 Эффект Ганна
- •6.6.2 Эффекты Пельтье и Зеебека
- •6.6.3 Туннельный эффект
- •6.6.4 Эффект Холла
- •6.7 Биполярные транзисторы
- •6.7.1 Общие сведения о транзисторах
- •6.7.2 Конструкция некоторых биполярных транзисторов
- •6.7.3 Принцип действия биполярных транзисторов
- •6.7.4 Схемы включения биполярных транзисторов
- •6.7.5 Биполярные фототранзисторы
- •6.8 Полевые транзисторы с управляющим переходом
- •6.8.1 Конструкция полевых транзисторов с управляющим переходом
- •6.8.2 Полевые транзисторы с изолированным затвором
- •6.8 Биполярные транзисторы с изолированными затворами
- •6.8.1 Общие сведения о бтиз
- •6.8.2 Конструкция и принцип действия бтиз
- •6.9 Тиристоры
- •6.9.1 Общая информация о тиристорах
- •6.9.2. Динисторы
- •6.9.3 Тринисторы
- •6.9.4 Запираемые тиристоры
- •6.9.5 Симисторы
- •6.10 Интегральные микросхемы
- •6.10.1 Определения гост 17021—88
- •6.10.2 Классификация микросхем
- •6.10.3 Технология изготовления пленочных имс
- •6.10.4 Гибридные интегральные микросхемы
- •6.10.5 Полупроводниковые микросхемы
- •7.Конструирование радиоэлектронных устройств
- •7.1 Изготовление печатных плат
- •7.2 Монтаж компонентов на печатной плате
- •7.2.1 Шелкография или маркировка.
- •7.2.2 Монтаж компонентов
- •8 Устройства отображения информации
- •8.1 Индикаторы
- •8.2 Светодиодные индикаторы
- •8.3 Жидкокристаллические индикаторы
- •8.4 Общие сведения об электронно-лучевых трубках
- •8.5 Жидкокристаллические дисплеи и панели
- •8.5.1 Общие сведения о жидкокристаллических дисплеях
- •8.5.2 Электролюминесцентная подсветка жидкокристаллических дисплеев
- •8.5 3 Светодиодная подсветка жидкокристаллических дисплеев
- •8.5.4 Время отклика жидкокристаллических дисплеев и влияние температуры на их работу
- •8.6 Плазменные панели
- •8.7 Дисплеи на углеродных нанотрубках
- •8.8 Сенсорные экраны и классификация их типов
- •8.9 Голографические системы
- •9 Простейшие схемы электроники
- •9.1 Усилители электрических сигналов
- •Классификация усилительных устройств.
- •9.2 Генераторы
- •9.3 Дискретные устройства
- •Список литературы
6.7 Биполярные транзисторы
6.7.1 Общие сведения о транзисторах
Транзисторами называют полупроводниковые приборы, имеющие не менее трёх выводов, которые будучи включенные определённые схемы могут усиливать мощность, преобразовывать сигнал, или генерировать колебания. Различных видов транзисторов много – это полевые (униполярные), биполярные транзисторы, биполярные транзисторы с изолированным затвором, однопереходные (двухбазовые) транзисторы, фототранзисторы и другие.
Транзисторные устройства по сравнению с устройствами на электронных лампах обладают большей экономичностью, низким энергопотреблением, длительным временем наработки на отказ, малой массой и габаритами, высокой механической прочностью. К недостаткам транзисторов следует отнести невысокую радиационную стойкость, невозможность работы при температуре полупроводникового кристалла из кремния значительно выше 125 °C и прочее.
Рисунок 40 – Обозначение биполярного транзистора на схеме и внешний вид
Транзисторы классифицируют по материалу полупроводника, подразделяя на германиевые, кремниевые, из арсенида галлия и прочие.
Биполярные транзисторы, у которых две из трёх областей имеют дырочный тип проводимости, называют транзисторами с прямой проводимостью, или структуры p-n-p. Биполярные транзисторы, у которых две из трёх областей имеют электронный тип проводимости, называют транзисторами с обратной проводимостью, или структуры n-p-n.
Транзисторы подразделяют по максимальной частоте сигнала на:
- низкочастотные, которые способны усиливать сигнал с частотой менее 3 МГц,
- среднечастотные транзисторы, способные усиливать сигнал с частотой от 3 МГц, до 30 МГц,
- высокочастотные транзисторы, которые способны усиливать сигналы с частотой, превышающей 30 МГц,
- сверхвысокочастотные, позволяющие работать на ещё большей частоте (выше 300 МГц).
По значению максимальной рассеиваемой мощности:
- маломощные, обеспечивающие мощность рассеяния, меньшую 0,3 Вт,
- транзисторы средней мощности, с рассеиваемой мощностью от 0,3 Вт, до 3 Вт,
- транзисторы, мощность рассеяния которых превышает 3 Вт называют мощными транзисторами.
6.7.2 Конструкция некоторых биполярных транзисторов
Для изготовления дискретного биполярного транзистора необходим полупроводник электронного или дырочного типов проводимости, именуемый, как и вывод от него, базой, который, например, методом сплавления или диффузии легируют акцепторными примесями так, чтобы по обе стороны от базы были выполнены зоны с противоположными типами проводимостей. Это отражено на упрощённой конструкции сплавного биполярного транзистора, приведённой на рисунке 41.
Рисунок 41 – Конструкция плоскостного транзистора
На рисунке цифрами обозначены: 1 – коллектор; 2 – база транзистора, например, образованная кристаллом германия или кремния; 3 – основание компонента; 4, 5 – вплавленные в кристалл примеси, например, индия или алюминия; 6 – кристаллодержатель; 7 – эмиттер.
Кристалл полупроводника, образующий базу транзистора, в данном случае механически прикреплён и электрически соединён с металлической пластинкой, приваренной к стенке компонента. Толщина базы обычно не превышает нескольких микрон. На рисунке видно, что эмиттерная область имеет меньшую площадь, чем коллекторная. Между базой и коллектором лежит коллекторный переход, а между базой и эмиттером – эмиттерный переход. В области базы транзистора концентрация носителей заряда чрезвычайно низка, а, следовательно, её проводимость очень мала. В области коллектора концентрация и проводимость намного больше, чем в области базы, а в области эмиттера несколько выше, чем в области коллектора. Таким образом, концентрации носителей зарядов в областях транзисторов существенно отличаются.