
- •1.Механическое движение и его виды. Равноускоренное движение.
- •3. Первый закон Ньютона. Второй закон Ньютона. Третий закон Ньютона.
- •5.Силы трения.
- •6.Сила упругости. Механические свойства твердых тел. Закон Гука.
- •7.Импульс тела. Закон сохранения импульса. Реактивное движение.
- •10.Механические волны. Свойства механических волн. Длина волны.
- •12.Звуковые волны. Ультразвук и его использование в технике и медицине.
- •13.Основные понятия молекулярно-кинетической теории. Масса и размеры молекул. Число Авогадро. Изменения агрегатных состояний вещества.
- •14.Идеальный газ. Основное уравнение молекулярно-кинетической теории идеального газа.
- •15.Абсолютная шкала температур. Связь средней кинетической энергии молекул с температурой. Уравнение Больцмана.
- •16.Давление газа. Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона). Изопроцессы.
- •17.Внутренняя энергия тела и способы её изменения. Изменение внутренней энергии тела при нагревании. Первое начало термодинамики. Обратимые и необратимые процессы.
- •18.Внутренняя энергия идеального газа. Работа газа при изобарном расширении. Применение первого начала термодинамики к изопроцессам. Понятие о втором начале термодинамики.
- •19.Принцип действия тепловой машины. Кпд теплового двигателя.
- •21.Жидкое состояние вещества. Ближний порядок. Поверхностное натяжение. Аморфные вещества.
- •22.Испарение жидкостей. Насыщенный пар.
- •23. Кипение. Изменение внутренней энергии при испарении. Вычисление теплоты испарения. Критическое состояние вещества.
- •Электричество
- •25.Электрическое взаимодействие тел. Закон Кулона. Закон сохранения электрического заряда.
- •28.Работа электрических сил. Разность потенциалов. Связь разности потенциалов с напряженностью электрического поля.
- •29.Понятие о конденсаторе. Электроёмкость конденсатора. Энергия заряженного конденсатора. Емкость плоского конденсатора.
- •30.Постоянный электрический ток. Сила тока, напряжение, электрическое сопротивление. Зависимость сопротивления от температуры. Сверхпроводимость. Закон Ома для участка цепи без эдс.
- •Параллельное соединение.
- •32.Электродвижущая сила. Закон Ома для полной цепи . Короткое замыкание.
- •33. Работа и мощность тока. Тепловое действие тока. Закон Джоуля-Ленца.
- •34.Электропроводность полупроводников. Собственная и примесная проводимость. Электронно-дырочный переход. Полупроводниковые приборы.
- •38.Действие магнитного поля на движущийся заряд. Сила Лоренца.
- •42.Самоиндукция. Энергия магнитного поля. Применение самоиндукции.
- •43.Электромагнитные колебания. Колебательный контур. Формула Томсона.
- •Период колебательного контура (формула Томсона)
- •44.Переменный ток как пример вынужденных колебаний. Действующие значения силы тока и напряжения. Мощность переменного тока.
- •47.Получение постоянного тока. Выпрямители.
- •48.Получение электромагнитных волн. Опыты Герца.
- •49.Использование электромагнитных волн для связи. Изобретение радио а.С.Поповым.
- •Атомная и ядерная физика
15.Абсолютная шкала температур. Связь средней кинетической энергии молекул с температурой. Уравнение Больцмана.
Абсолютная шкала температур. Шкала измерения температуры в соответствии с уравнением (25.4) называется абсолютной шкалой. Ее предложил английский физик У. Кельвин (Томсон) (1824—1907), поэтому шкалу называют также шкалой Кельвина.
До введения абсолютной шкалы температур в практике получила широкое распространение шкала измерения температуры по Цельсию. Поэтому единица температуры по абсолютной шкале, называемая кельвином (К), выбрана равной одному градусу по шкале Цельсия:
1 К = 1 °С. (25.5)
Температура — мера средней кинетической энергии молекул. Из уравнений (25.2) и (25.4) следует равенство
.
(25.8)
Средняя кинетическая энергия хаотического движения молекул газа пропорциональна абсолютной температуре.
Из уравнений (24.2) и (25.8) можно получить, что
p = nkT. (25.9)
Уравнение (25.9) показывает, что при одинаковых значениях температуры и концентрации молекул давление любых газов одинаково, независимо от того, из каких молекул они состоят.
Постоянная
Больцмана.
Как известно, 1 моль любого газа содержит
примерно
молекул
и при нормальном давлении
занимает
объем
.
При
нагревании любого газа при постоянном
объеме от 0 до 100° С его давление возрастает
от
до
.
Подставляя эти значения в уравнение
(25.6), получаем
;
.
Коэффициент k - называется постоянной Больцмана, в честь австрийского физика Людвига Больцмана (1844—1906), одного из создателей молекулярно-кинетической теории.
16.Давление газа. Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона). Изопроцессы.
Состояние данной массы газа полностью определено, если известны его давление, температура и объем. Эти неличины называют параметрами состояния газа. Уравнение, связывающее параметры состояния, называют уравнением состояния.
Для произвольной массы газа состояние газа описывается уравнением Менделеева—Клапейрона:
,
где
—
давление,
—
объем,
—
массa,
-
молярная масса,
—
универсальная газовая постоянная (
).
Физический смысл универсальной газовой
постоянной в том, что она показывает,
какую работу совершает один моль
идеального газа при изобарном расширении
при нагревании на 1 К.
Уравнение Менделеева—Клапейрона показывает, что возможно одновременное изменение трех параметров, характеризующих состояние идеального газа. Однако многие процессы в газах, происходящие в природе и осуществляемые в технике, можно рассматривать приближенно как процессы, в которых изменяются лишь два параметра. Особую роль в физике и технике играют три процесса: изотермический, изохорный и изобарный.
Изопроцессом называют процесс, происходящий с данной массой газа при одном постоянном параметре — температуре, давлении или объеме. Из уравнения состояния как частные случаи получаются законы для изопроцессов.
Изотермическим называют
процесс, протекаю-щий при постоянной
температуре:
.
Он описывается законом Бойля—Мариотта:
.
Изохорным называют
процесс, протекающий при постоянном
объеме:
.
Для него справедлив закон Шарля:
.
Изобарным называют
процесс, протекающий при постоянном
давлении. Уравнение этого процесса
имеет вид
при
и
называется законом Гей-Люссака. Все
изопроцессы можно изобразить графически.
На рисунке 11 представлены в различных
координатах графики процессов:
изотермического (изотерма АВ), изобарного
(изобара АС) и изохорного (изохора ВС).
Реальные газы удовлетворяют уравнению состоя ния идеального газа при не слишком высоких давлениях (пока собственный объем молекул пренебрежимо мал по сравнению с объемом сосуда, в котором находится газ) и при не слишком низких температуpax (пока потенциальной энергией межмолекулярного взаимодействия можно пренебречь по сравнению с кинетической энергией теплового движения молекул), т. е. для реального газа это уравнение и его следствия являются хорошим приближением.