
- •1.Механическое движение и его виды. Равноускоренное движение.
- •3. Первый закон Ньютона. Второй закон Ньютона. Третий закон Ньютона.
- •5.Силы трения.
- •6.Сила упругости. Механические свойства твердых тел. Закон Гука.
- •7.Импульс тела. Закон сохранения импульса. Реактивное движение.
- •10.Механические волны. Свойства механических волн. Длина волны.
- •12.Звуковые волны. Ультразвук и его использование в технике и медицине.
- •13.Основные понятия молекулярно-кинетической теории. Масса и размеры молекул. Число Авогадро. Изменения агрегатных состояний вещества.
- •14.Идеальный газ. Основное уравнение молекулярно-кинетической теории идеального газа.
- •15.Абсолютная шкала температур. Связь средней кинетической энергии молекул с температурой. Уравнение Больцмана.
- •16.Давление газа. Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона). Изопроцессы.
- •17.Внутренняя энергия тела и способы её изменения. Изменение внутренней энергии тела при нагревании. Первое начало термодинамики. Обратимые и необратимые процессы.
- •18.Внутренняя энергия идеального газа. Работа газа при изобарном расширении. Применение первого начала термодинамики к изопроцессам. Понятие о втором начале термодинамики.
- •19.Принцип действия тепловой машины. Кпд теплового двигателя.
- •21.Жидкое состояние вещества. Ближний порядок. Поверхностное натяжение. Аморфные вещества.
- •22.Испарение жидкостей. Насыщенный пар.
- •23. Кипение. Изменение внутренней энергии при испарении. Вычисление теплоты испарения. Критическое состояние вещества.
- •Электричество
- •25.Электрическое взаимодействие тел. Закон Кулона. Закон сохранения электрического заряда.
- •28.Работа электрических сил. Разность потенциалов. Связь разности потенциалов с напряженностью электрического поля.
- •29.Понятие о конденсаторе. Электроёмкость конденсатора. Энергия заряженного конденсатора. Емкость плоского конденсатора.
- •30.Постоянный электрический ток. Сила тока, напряжение, электрическое сопротивление. Зависимость сопротивления от температуры. Сверхпроводимость. Закон Ома для участка цепи без эдс.
- •Параллельное соединение.
- •32.Электродвижущая сила. Закон Ома для полной цепи . Короткое замыкание.
- •33. Работа и мощность тока. Тепловое действие тока. Закон Джоуля-Ленца.
- •34.Электропроводность полупроводников. Собственная и примесная проводимость. Электронно-дырочный переход. Полупроводниковые приборы.
- •38.Действие магнитного поля на движущийся заряд. Сила Лоренца.
- •42.Самоиндукция. Энергия магнитного поля. Применение самоиндукции.
- •43.Электромагнитные колебания. Колебательный контур. Формула Томсона.
- •Период колебательного контура (формула Томсона)
- •44.Переменный ток как пример вынужденных колебаний. Действующие значения силы тока и напряжения. Мощность переменного тока.
- •47.Получение постоянного тока. Выпрямители.
- •48.Получение электромагнитных волн. Опыты Герца.
- •49.Использование электромагнитных волн для связи. Изобретение радио а.С.Поповым.
- •Атомная и ядерная физика
7.Импульс тела. Закон сохранения импульса. Реактивное движение.
Импульсом тела называют векторную физическую величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается р. Единица измерения импульса Р - кг · м/с. Импульс тела равен произведению массы тела на его скорость: р = mv.Направление вектора импульса р совпадает с направлением вектора скорости тела v (рис. 4).
Для импульса тел выполняется закон сохранения, который справедлив только для замкнутых физических систем. В общем случае замкнутой называют систему, которая не обменивается энергией и массой с телами и полями, не входящими в нее. В механике замкнутой называют систему, на которую не действуют внешние силы или действие этих сил скомпенсировано. В этом случае р1 = р2 где р1 - начальный импульс системы, а р2 - конечный. В случае двух тел, входящих в систему, это выражение имеет вид m1v1 + т2v2 = m1v1' + т2v2' где т1 и т2 - массы тел, а v1 и v2, - скорости до взаимодействия, v1' иv2' - скорости после взаимодействия. Эта формула и является математическим выражением закона сохранения импульса: импульс замкнутой физической системы сохраняется при любых взаимодействиях, происходящих внутри этой системы. Закон сохранения импульса лежит в основе реактивного движения. Реактивное движение - это такое движение тела, которое возникает после отделения от тела его части.
8.Работа. Кинетическая и потенциальная энергия. Закон сохранения механической энергии. (не нашла)
9.Механические колебания . Свободные и вынужденные колебания. Резонанс.
Механическими колебаниями называют движения тела, повторяющиеся точно или приблизительно через одинаковые промежутки времени. Основными характеристиками механических колебаний являются: смещение, амплитуда, частота, период. Смещение - это отклонение от положения равновесия. Амплитуда - модуль максимального отклонения от положения равновесия. Частота - число полных колебаний, совершаемых в единицу времени. Период - время одного полного колебания, т. е. минимальный промежуток времени, через который происходит повторение процесса. Период и частота связаны соотношением: v = 1/T.
Простейший вид колебательного движения - гармонические колебания, при которых колеблющаяся величина изменяется со временем по закону синуса или косинуса (рис. 8).
Свободными - называют колебания, которые совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на систему, совершающую колебания. Например, колебания груза на нити (рис. 9).
Рассмотрим процесс превращения энергии на примере колебаний груза на нити (см. рис. 9).
При отклонении маятника от положения равновесия он поднимается на высоту h относительно нулевого уровня, следовательно, в точке Амаятник обладает потенциальной энергией mgh. При движении к положению равновесия, к точке О, уменьшается высота до нуля, а скорость груза увеличивается, и в точке О вся потенциальная энергия mgh превратится в кинетическую энергию mvг/2. В положении равновесия кинетическая энергия имеет максимальное значение, а потенциальная энергия минимальна. После прохождения положения равновесия происходит превращение кинетической энергии в потенциальную, скорость маятника уменьшается и при максимальном отклонении от положения равновесия становится равной нулю. При колебательном движении всегда происходят периодические превращения его кинетической и потенциальной энергий.
При свободных механических колебаниях неизбежно происходит потеря энергии на преодоление сил сопротивления. Если колебания происходят под действием периодически действующей внешней силы, то такие колебания называют вынужденными. Например, родители раскачивают ребенка на качелях, поршень движется в цилиндре двигателя автомобиля, колеблются нож электробритвы и игла швейной машины. Характер вынужденных колебаний зависит от характера действия внешней силы, от ее величины, направления, частоты действия и не зависит от размеров и свойств колеблющегося тела. Например, фундамент мотора, на котором он закреплен, совершает вынужденные колебания с частотой, определяемой только числом оборотов мотора, и не зависит от размеров фундамента.
При совпадении частоты внешней силы и частоты собственных колебаний тела амплитуда вынужденных колебаний резко возрастает. Такое явление называют механическим резонансом. Графически зависимость вынужденных колебаний от частоты действия внешней силы показана на рисунке 10.
Явление резонанса может быть причиной разрушения машин, зданий, мостов, если собственные их частоты совпадают с частотой периодически действующей силы. Поэтому, например, двигатели в автомобилях устанавливают на специальных амортизаторах, а воинским подразделениям при движении по мосту запрещается идти «в ногу».
При отсутствии трения амплитуда вынужденных колебаний при резонансе должна возрастать со временем неограниченно. В реальных системах амплитуда в установившемся режиме резонанса определяется условием потерь энергии в течение периода и работы внешней силы за то же время. Чем меньше трение, тем больше амплитуда при резонансе.