
- •1.Механическое движение и его виды. Равноускоренное движение.
- •3. Первый закон Ньютона. Второй закон Ньютона. Третий закон Ньютона.
- •5.Силы трения.
- •6.Сила упругости. Механические свойства твердых тел. Закон Гука.
- •7.Импульс тела. Закон сохранения импульса. Реактивное движение.
- •10.Механические волны. Свойства механических волн. Длина волны.
- •12.Звуковые волны. Ультразвук и его использование в технике и медицине.
- •13.Основные понятия молекулярно-кинетической теории. Масса и размеры молекул. Число Авогадро. Изменения агрегатных состояний вещества.
- •14.Идеальный газ. Основное уравнение молекулярно-кинетической теории идеального газа.
- •15.Абсолютная шкала температур. Связь средней кинетической энергии молекул с температурой. Уравнение Больцмана.
- •16.Давление газа. Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона). Изопроцессы.
- •17.Внутренняя энергия тела и способы её изменения. Изменение внутренней энергии тела при нагревании. Первое начало термодинамики. Обратимые и необратимые процессы.
- •18.Внутренняя энергия идеального газа. Работа газа при изобарном расширении. Применение первого начала термодинамики к изопроцессам. Понятие о втором начале термодинамики.
- •19.Принцип действия тепловой машины. Кпд теплового двигателя.
- •21.Жидкое состояние вещества. Ближний порядок. Поверхностное натяжение. Аморфные вещества.
- •22.Испарение жидкостей. Насыщенный пар.
- •23. Кипение. Изменение внутренней энергии при испарении. Вычисление теплоты испарения. Критическое состояние вещества.
- •Электричество
- •25.Электрическое взаимодействие тел. Закон Кулона. Закон сохранения электрического заряда.
- •28.Работа электрических сил. Разность потенциалов. Связь разности потенциалов с напряженностью электрического поля.
- •29.Понятие о конденсаторе. Электроёмкость конденсатора. Энергия заряженного конденсатора. Емкость плоского конденсатора.
- •30.Постоянный электрический ток. Сила тока, напряжение, электрическое сопротивление. Зависимость сопротивления от температуры. Сверхпроводимость. Закон Ома для участка цепи без эдс.
- •Параллельное соединение.
- •32.Электродвижущая сила. Закон Ома для полной цепи . Короткое замыкание.
- •33. Работа и мощность тока. Тепловое действие тока. Закон Джоуля-Ленца.
- •34.Электропроводность полупроводников. Собственная и примесная проводимость. Электронно-дырочный переход. Полупроводниковые приборы.
- •38.Действие магнитного поля на движущийся заряд. Сила Лоренца.
- •42.Самоиндукция. Энергия магнитного поля. Применение самоиндукции.
- •43.Электромагнитные колебания. Колебательный контур. Формула Томсона.
- •Период колебательного контура (формула Томсона)
- •44.Переменный ток как пример вынужденных колебаний. Действующие значения силы тока и напряжения. Мощность переменного тока.
- •47.Получение постоянного тока. Выпрямители.
- •48.Получение электромагнитных волн. Опыты Герца.
- •49.Использование электромагнитных волн для связи. Изобретение радио а.С.Поповым.
- •Атомная и ядерная физика
19.Принцип действия тепловой машины. Кпд теплового двигателя.
Тепловые двигатели - это устройства, превращающие внутреннюю энергию топлива в механическую. Принципы действия тепловых двигателей. Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счет повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива. Одна из основных частей двигателя - сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T1. Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру T1 температурой нагревателя.' Коэффициент полезного действия (КПД) теплового двигателя.Невозможность полного превращения внутренней энергии газа в работу тепловых двигателей обусловлена необратимостью процессов в природе. Если бы тепло могло самопроизвольно возвращаться от холодильника к нагревателю, то внутренняя энергия могла бы быть полностью превращена в полезную работу с помощью любого теплового двигателя. Согласно закону сохранения энергии работа, совершаемая двигателем, равна:
где Q1 - количество теплоты, полученное от нагревателя, а Q2 - количество теплоты, отданное холодильнику. Коэффициентом полезного действия (КПД) теплового двигателя называют отношение работы A´, совершаемой двигателем, к количеству теплоты, полученной от нагревателя:
Так как у всех двигателей некоторое количество теплоты передается холодильнику, то η<1. КПД теплового двигателя пропорционален разности температур нагревателя и холодильника. При T1-T2=0 двигатель не может работать.
20. Кристаллическое состояние вещества. Дальний порядок. Полиморфизм. Монокристаллы и поликристаллы. Типы связей в твердых телах.
Кристаллизация (затвердевание) — фазовый переход вещества из жидкого состояния в кристаллическое (твердое).Кристаллизация происходит в результате охлаждения жидкости при определенной температуре.При кристаллизации жидкости происходит резкий скачкообразный переход от неупорядоченного расположения частиц (в жидкости) к упорядоченному (в твердом теле).При кристаллизации жидкости массой т выделяется количество теплоты
По
структуре относительного расположения
частиц твердые тела делят на три вида:
кристаллические, аморфные и композиты.В
кристаллическом состоянии существует
периодичность в расположении атомов
(дальний порядок). Кристаллическая
решетка — пространственная структура
с регулярным, периодически повторяющимся
расположением частиц.
Узел кристаллической решетки — положение равновесия, относительно которого происходят тепловые колебания частиц.
Полиморфизм — существование различных кристаллических структур у одного и того же вещества. Кристаллическое тело может быть монокристаллом или поликристаллом.
Монокристалл — твердое тело, частицы которого образуют единую кристаллическую решетку. Анизотропия — зависимость физических свойств от направления. Монокристаллы — анизотропны. Поликристалл — твердое тело, состоящее из беспорядочно ориентированных монокристаллов. Изотропия — независимость физических свойств тела от направления. Поликристаллы — изотропны. Деформация — изменение формы и размера твердого тела под действием внешних сил.
Различают два вида деформаций — упругую и пластическую.
Упругая деформация — деформация, исчезающая после прекращения действия внешней силы. Пластическая деформация — деформация, сохраняющаяся после прекращения действия внешних сил. Напряжение — физическая величина, равная отношению силы упругости к площади поперечного сечения тела.