
- •2. Азотистый баланс организма и его регуляция. Суточная потребность в белках. Биологическая ценность белков. Незаменимые аминокислоты
- •3.. Общие пути обмена аминокислот.
- •3.Декарбоксилирование, связанное с реакцией трансаминирования:
- •4.Декарбоксилирование, связанное с реакцией конденсации двух молекул:
- •4. Образование и обезвреживание аммиака в организме. Орнитиновый цикл синтеза мочевины. Его роль и связь с другими метаболическими путями.
- •5. Специфический обмен глицина и серина. Их роль в биосинтезе биологически важных веществ.
- •6. Специфический обмен фенилаланина и тирозина. Образование биологически активных продуктов. Молекулярная патология (фенилкетонурия, алкаптонурия, альбинизм).
- •7. Специфический обмен серосодержащих аминокислот. Их роль в биосинтезе биологически важных веществ.
- •8.Специфический обмен триптофана и гистидина. Образование и биологическая роль серотонина и гистамина.
- •9. Включение аминокислот в общие пути метаболизма. Гликогенные и кетогенные аминокислоты. Привести примеры.
- •10.. Молекулярная патология обмена аминокислот (фенилкетонурия, алкаптонурия, альбинизм, лейциноз).
- •11. Катаболизм гемоглобина. Образование и обмен билирубина. Дифференциальная диагностика желтух.
- •12. Катаболизм нуклеопротеинов. Патология пуринового обмена.
- •47. Химический состав крови. Характеристика буферных систем. Остаточный азот.
- •48.2. Белки крови. Общая характеристика, роль, отдельные представители. Электрофорез белков крови
- •49. Альбумин. Структура и функции.
- •51. Дыхательная функция крови. Гемоглобин и миоглобин. Структура, функции, особенности функционирования.
- •52.Роль печени в обмене углеводов
- •54.Роль печени в обмене белков
- •I.Окисление:
- •56.Участие печени в пигментном обмене. Виды желтух
9. Включение аминокислот в общие пути метаболизма. Гликогенные и кетогенные аминокислоты. Привести примеры.
Превращения α-кетокислот. Образовавшиеся в процессе дезаминирования и трансдезаминирования α-кетокислоты подвергаются в тканях животных различным превращениям и могут вновь трансаминироваться с образованием соответствующей аминокислоты. Это так называемый синтетический путь превращения кетокислотам L-аминокислоты.
Углеродные скелеты аминокислот могут включаться в ЦТК через ацетил-КоА, пируват, оксалоацетат, α-кетоглутарат и сукцинил-КоА. Пять аминокислот (Фен, Лиз, Лей, Трп, Тир) считаются «кетогенными», поскольку они являются предшественниками кетоновых тел, в частности ацетоуксусной кислоты, а большинство других аминокислот-«гликогенные»-служат в организме источником углеводов, в частности глюкозы. Разделение аминокислот на «кетогенные» и «гликогенные» носит условный характер, поскольку отдельные участки углеродных атомов Лиз, Трп, Фен и Тир могут включаться и в молекулы предшественников глюкозы, например Фен и Тир-в фумарат. Истинно «кетогенной» аминокислотой является только лейцин.
10.. Молекулярная патология обмена аминокислот (фенилкетонурия, алкаптонурия, альбинизм, лейциноз).
Азотистый обмен связан с обменом белков, структурными единицами которых являются аминокислоты. При нарушениях обмена аминокислот возникают следующие патологии:
Фенилкетонурия (фенилпировиноградная олигофрения) развивается как результат потери способности организма синтезировать фенилаланин-4-монооксигеназу, катализирующую превращение фенилаланина в тирозин. Характерные особенности болезни – резкое замедление умственного развития ребенка, а также экскреция с мочой больших количеств фенил-пировиноградной кислоты (до 1–2 г/сут) и фенилацетилглутамина (до 2–3 г/сут). Решающим доказательством метаболического блока при фенилкетонурии являются данные о накоплении фенилаланина в тканях. Так, количество его в крови может достигать 600 мг/л (в норме 15 мг/л), в цереброспинальной жидкости – 80 мг/л (в норме 1,5 мг/л). Развитие болезни можно предотвратить, если значительно снизить прием фенилаланина с пищей с самого рождения ребенка.
Алкаптонурия характеризуется экскрецией с мочой больших количеств (до 0,5 г/сут) гомогентизиновой кислоты, окисление которой кислородом воздуха придает моче темную окраску. В далеко зашедших случаях развиваются охроноз, наблюдаются отложение пигмента в тканях и потемнение носа, ушей и склеры. Этот дефект связан с врожденным отсутствием в печени и почках оксидазы гомогентизиновой кислоты.
Альбинизм – врожденное отсутствие пигментов в коже, волосах и сетчатке. Метаболический дефект связан с потерей меланоцитами способности синтезировать тирозиназу – фермент, катализирующий окисление тирозина в диоксифенилаланин и диоксифенилаланинхинон, являющихся предшественниками меланина.
Лейцино́з (разветвлённоцепочечная кетонурия, болезнь мочи с запахом кленового сиропа, болезнь кленового сиропа)— врождённое нарушение обмена, ферментопатия.
Наследственное заболевание с аутосомно-рецессивным типом наследования. Первичный биохимический дефект заключается в отсутствии или резком снижении активности ферментной системы, обеспечивающей окислительное декарбоксилирование трёх аминокислот — лейцина, изолейцина и валина. В результате в организме накапливаются эти аминокислоты и их предшественники. Наиболее патогенно накопление лейцина.
Заболевание протекает тяжело и часто заканчивается летально. У детей отмечается задержка развития, угнетение ЦНС, больные могут впадать в летаргию. Характерна гипогликемия и гипотония, имеется кетоацидоз, рвота.