Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2-12_47-56.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.33 Mб
Скачать

5. Специфический обмен глицина и серина. Их роль в биосинтезе биологически важных веществ.

Глицин является единственной из всех входящих в состав белков амино­кислот, в молекуле которой отсутствует асимметричный атом углерода. Тем не менее метаболически он связан с химическими компонентами организма в большей степени, чем любая другая аминокислота.

Показано, что в реакции взаимопревращения глицина и серина участвует тетрагидрофолиевая кислота; эту реакцию катализирует пиридоксалевый фермент серин-оксиметилтрансфераза:

На схеме видно, что глицин в некоторых синтезах играет незаменимую роль, в частности в образовании белков, пуриновых нуклеотидов, гема гемоглобина, парных желчных кислот, креатина, глутатиона и др. Боль­шинство этих реакций представлено в соответствующих разделах учебника. Здесь укажем на реакции, при помощи которых осуществляются взаимо­превращения глицина, серина и треонина, а также на реакции катаболизма Имеются также доказательства взаимопревращения треонина и глицина в треонинальдолазной реакции:

Основным путем катаболизма глицина в животных тканях, однако, считается распад его на С02, NH3 и N5,-метилентетрагидрофолиевую кислоту по уравнению:

Механизм этой реакции, недавно раскрытый К. Тада, включает участие митохондриальной глицинрасщепляющей ферментной системы, отличной от глицинсинтазы и состоящей из 4 белков: Р-белка, содержащего пиридоксальфосфат (глициндекарбоксилаза); Н-белка, содержащего липое-вую кислоту; Т-белка, требующего присутствия ТГФК, и L-белка, назван­ного липамиддегидрогеназой:

Доказательства что наследственная некетогенная глициномии (повышение уровня глицина в крови) обусловлена недостаточностью Р- или Т-бедка глицин расщепляющей ферментной системы пенсии или мозга и что

каждый из этих белков контролируется отдельным геном. Серии легко превращается в пиру ват под действием сериндегндратазы. В связи с этим в тканях имеются условия для превращения глицина (через серии) в пиру ват. Этим путем осуществляется участие глицина в обмене углеводов. Важную роль играет серии в биосинтезе сложных белков-фосфоиротеинов, а также фоофоглицеридов. Помимо фоефатидилсерина, углеродный скелет и азот серина используются в биосинтезе фосфатидид-этаноламина и фосфатидилхолина.

6. Специфический обмен фенилаланина и тирозина. Образование биологически активных продуктов. Молекулярная патология (фенилкетонурия, алкаптонурия, альбинизм).

Фенилаланин- незаменимая аминокислота, т.к. ткани животных не обладают способностью синтезировать его бензольное кольцо. А тирозин полностью заменим при достаточном поступлении фенилаланина с пищей. Объясняется это тем, что основной путь превращения фенилаланина начинается с его окисления (точнее, гидроксилирования) в тирозин Реакция гидроксилирования катализируется специфической фенилаланин-4-монооксигеназой, которая в качестве кофермента содержит тетрагидробиоптерин. Блокирование этой реакции, наблюдаемое при нарушении синтеза фенилаланин-4-монооксигеназы в печени, приводит к развитию тяжелой наследственной болезни – фенилкетонурии (фенилпировиноградная олигофрения). В процессе трансаминирования тирозин превращается в n-оксифенилпировиноградную кислоту, которая под действием специфической оксидазы подвергается окислению, декарбоксилированию, гидроксилированию и внутримолекулярному перемещению боковой цепи с образованием гомогентизиновой кислоты; эта реакция требует присутствия аскорбиновой кислоты, роль которой пока не выяснена. Дальнейшее превращение гомогентизиновой кислоты в малеилацетоуксусную кислоту катализируется оксидазой гомогентизиновой кислоты. Малеилацетоуксусная кислота под действием специфической изомеразы в присутствии глутатиона превращается в фумарилацетоуксусную кислоту, подвергающуюся гидролизу с образованием фумаровой и ацетоуксусной кислот, дальнейшие превращения которых уже известны.

Цифры в кружках - участки блокирования реакций при фенилкетонурии (1), тирозинозе (2), альбинизме (3) и алкаптонурии (4).

Фенилаланин и тирозин являются предшественниками меланинов, обеспечивающих пигментацию кожи, глаз, волос, активное участие принимает фермент тирозиназа.

Фенилкетонурия (фенилпировиноградная олигофрения) развивается как результат потери способности организма синтезировать фенилаланин-4-монооксигеназу, катализирующую превращение фенилаланина в тирозин. Характерные особенности болезни – резкое замедление умственного развития ребенка, а также экскреция с мочой больших количеств фенил-пировиноградной кислоты (до 1–2 г/сут) и фенилацетилглутамина (до 2–3 г/сут). Решающим доказательством метаболического блока при фенилкетонурии являются данные о накоплении фенилаланина в тканях. Так, количество его в крови может достигать 600 мг/л (в норме 15 мг/л), в цереброспинальной жидкости – 80 мг/л (в норме 1,5 мг/л). Развитие болезни можно предотвратить, если значительно снизить прием фенилаланина с пищей с самого рождения ребенка.

Алкаптонурия характеризуется экскрецией с мочой больших количеств (до 0,5 г/сут) гомогентизиновой кислоты, окисление которой кислородом воздуха придает моче темную окраску. В далеко зашедших случаях развиваются охроноз, наблюдаются отложение пигмента в тканях и потемнение носа, ушей и склеры. Этот дефект связан с врожденным отсутствием в печени и почках оксидазы гомогентизиновой кислоты.

Альбинизм – врожденное отсутствие пигментов в коже, волосах и сетчатке. Метаболический дефект связан с потерей меланоцитами способности синтезировать тирозиназу – фермент, катализирующий окисление тирозина в диоксифенилаланин и диоксифенилаланинхинон, являющихся предшественниками меланина.