Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Моя шняга.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.88 Mб
Скачать

Регуляции по возмущению и по отклонению

На всех трех уровнях структурной организации системы регуляции возможны два типа регуляции: по возмущению и по отклонению.

Регуляция по возмущениюРегуляция по отклонению

Регуляция по возмущению (саморегуляция по входу) системы (рис.3.1) возможна только для открытых систем, имеющих связи с внешней средой. Этот тип регуляции включается в тех случаях, когда на живую систему оказывает воздействие внешний для нее фактор, меняющий условия  ее  существования.

Например, регуляция дыхания обычно обеспечивает оптимальную для метаболизма клеток взаимосвязь процессов газообмена в легких, транспорта газов кровью и газообмена крови с клетками в тканях. Физическая же нагрузка, не являющаяся частью структуры приве­денной системы (внешняя для нее), представляет собой возмуща­ющее воздействие и, поскольку физическая нагрузка ставит новые условия в виде повышенной потребности мышц в кислороде, реали­зуется регуляция по возмущению, меняющая интенсивность состав­ляющих дыхание  процессов. В том же примере регуляция дыхания по возмущению возникает при изменении состава атмосферного воздуха или его давления. Она отличается опережающим характером реагирования, т.е. эф­фект возмущающего воздействия прогнозируется и организм зара­нее к нему готовится. Так, активация системы дыхания при фи­зической нагрузке  происходит до  того,  как  усиленно  работающие мышечные клетки начинают испытывать недостаток кислородного обеспечения и для того, чтобы не допустить их кислородного го­лодания .

Регуляция по отклонению (саморегуляция по выходу системы) обеспечивается сравнением имеющихся параметров реакции физио­логических систем с требующимися в конкретных условиях, опреде­лением степени рассогласования между ними и включением испол­нительных устройств для устранения этого рассогласования. Част­ным примером регуляции по отклонению является поддержание фи­зиологических констант внутренней среды. Стоит только отклонить­ся от заданного уровня и повыситься в крови напряжению углекис­лого газа из-за недостаточного его удаления через легкие или по­вышенного образования в тканях, как начнут реализовываться регуляторные механизмы. Речь идет о комплексе реакций первого, второго и третьего уровней, необходимых для устранения этого сдвига: образование углекислоты и бикарбоната натрия, связывание водородных ионов буферными системами, повышение выведения протонов через почки, активация дыхания для выведения углекис­лого газа во внешнюю среду.

Регуляция по отклонению требует наличия канала связи между выходом системы регуляции и ее центральным аппаратом управле­ния (рисЗ.1) и даже между выходом и входом системы регуляции. Этот канал получил название обратной связи.

По сути, обратная связь есть процесс влияния результата действия на причину и механизм этого действия.

Именно обратная связь позволяет регуляции по отклонению работать в двух режимах: компенсационном и слеже­ния.

Компенсационный режим обеспечивает быструю корректировку рассогласования реального и оптимального состояния физиологических систем при внезапных влияниях среды, т.е. оптимизирует ре­акции организма. При режиме слежения регуляция осуществляется по заранее заданным программам, а обратная связь контролирует соответствие параметров деятельности физиологической системы за­данной программе. Если возникает отклонение — реализуется компенсационный режим.

Эффект обратной связи всегда запаздывает, т.к. она включает компенсационный режим уже после того как произошло рассогла­сование. Поэтому в центральном аппарате управления системы ре­гуляции обычно заложен еще один механизм контроля, позволяю­щий получать информацию не об уже полученных параметрах де­ятельности, а осуществляющий сравнение сигналов, посылаемых к исполнительным устройствам, с сигналами, требуемыми для задан­ной программы. Этот механизм контроля свойственен третьему уров­ню системы регуляции и осуществляется центральной нервной сис­темой.

По конечному эффекту регуляции обратная связь может быть положительной и  отрицательной.

Положительная обратная связьОтрицательная обратная связь

Положительная обратная связь означает, что выходной сигнал системы регуляции усиливает входной, активация какой-либо функ­ции вызывает усиление механизмов регуляции еще больше  ее активирующих. Такая обратная связь усиливает процессы жизнеде­ятельности. Например, прием пищи и поступление ее в желудок усиливают отделение желудочного сока, необходимого для гидро­лиза веществ. Появляющиеся в желудке и частично всасывающиеся в кровь продукты гидролиза в свою очередь стимулируют сокоот­деление, что ускоряет и усиливает дальнейшее переваривание пищи. Однако положительная обратная связь часто приводит систему в неустойчивое состояние, способствует формированию «порочных кругов», лежащих в основе многих патологических процессов в организме.

Отрицательная обратная связь означает, что выходной сигнал уменьшает входной, активация какой-либо функции подавляет ме­ханизмы регуляции, усиливающие эту функцию. Отрицательные об­ратные связи способствуют сохранению устойчивого, стационарного состояния системы. Благодаря им, возникающее отклонение регули­руемого параметра уменьшается и система возвращается к первона­чальному состоянию. Например, под влиянием паратирина (гормона околощитовидных желез) в крови возрастает содержание ионизиро­ванного кальция. Повышенный уровень катиона тормозит секрецию паратирина, усиливает поступление в кровь кальцитонина (гормона щитовидной железы), под влиянием которого уровень кальция сни­жается  и  его  содержание  в  крови  нормализуется.

Отрицательные обратные связи способствуют сохранению стабиль­ности физиологических параметров внутренней среды при возмуща­ющих воздействиях внешней среды, т.е. поддерживают гомеостазис. Они работают и в обратном направлении, т.е. при уменьшении параметров включают системы регуляции повышающие их и тем самым  обеспечивающие  восстановление  гомеостазиса.

Виды регуляции…нервная и гуморальная

11.Функциональные системы, по П. К. Анохину, самоорганизующиеся и саморегулирующиеся динамические центрально-периферические организации, объединенные нервными и гуморальными регуляциями, все составные компоненты которых взаимосодействуют обеспечению различных полезных для самих функциональных систем и для организма в целом адаптивных результатов, удовлетворяющих его раличные потребности. Оценка параметров достигнутых результатов в каждой функциональной системе постоянно осуществляется с помощью обратной афферентации.

Функциональная система – временная совокупность органов, которые принадлежат разным анатомическим и физиологическим структурам, но обеспечивают выполнение особых форм физиологической деятельности и определенных функций. Она обладает рядом свойств, таких как:

1) саморегуляция;

2) динамичность (распадается только после достижения желаемого результата);

3) наличие обратной связи

СИСТЕМООБРАЗУЮЩИЙ ФАКТОР – элемент системы, изъятие которого приводит к трансформации системы в др. систему

Одним из ведущих принципов построения функциональных систем организма является так называемый голографический принцип. Каждый элемент, включенный в деятельность функциональных систем, отражает в своей активности состояние ее конечного результата. Иными словами, именно в деятельности отдельных элементов функциональных систем отражается исходная потребность организма и ее удовлетворение.

Взаимодействие отдельных функциональных систем в целом организме и в популяциях строится на основе принципов доминирования и многосвязного регулирования по конечным результатам. Доминирование отдельных функциональных систем в организме определяется механизмами доминанты и означает, что в каждый данный момент времени деятельностью организма завладевает ведущая функциональная система, обеспечивающая удовлетворение главной для выживаемости, продления рода или общественного престижа потребности.

Принцип многосвязного регулирования означает взаимодействие разных функциональных систем по их конечным результатам, что нередко определяет их обобщенную деятельность в интересах целого организма. Примером такой деятельности различных функциональных систем является гомеостаз.

В целостном организме проявляется еще один принцип динамической организации функциональных систем - принцип последовательного квантования жизнедеятельности. Процессы гомеостаза и поведения в их континууме расчленяются деятельностью функциональных систем на дискретные элементы (кванты), каждый из которых заканчивается полезным для организма результатом.

Функциональные системы - объективно существующие организации, определяющие интегративные целостные функции организма, взаимодействие организмов между собой и с окружающей средой. За счет саморегуляции функциональных систем обладают способностью к самоорганизации.

12.возрастные особенности формирования и регуляции физиологических функции.

Возрастные особенности формирования и регуляции физиологических функций.

В процессе развития организма происходят как количественные, так и качественные его изменения. В результате усложнения структуры появляются новые функции, например, мозг ребенка приобретает способность к абстрактному мышлению. В основе возрастных изменений лежат:

1. Гетерохронность или неравномерность созревания систем и органов.

2. Этапные возрастные скачки.

3. Акселерация, т.е. ускорение темпов биологического развития в определенные периоды.

Это обусловлено влиянием внешней среды, социальными факторами, урбанизацией жизни. На основе наблюдений за формированием функциональных систем в онтогенезе Анохин создал учение о системогенезе. Гетерохронность развития органов и систем хорошо видна на примере двигательного аппарата ребенка. Первоначально формируется рефлекс и двигательные единицы, обеспечивающие держание головы, затем обуславливающие способность сидеть, стоять, ходить.

Программа индивидуального развития выполняется за счет генетического аппарата. На определенных возрастных этапах происходит активация определенных генов, в результате включаются определенные функции организма и формируются новые функциональные системы. Это проявляется возрастным скачком или критическим периодом. Например, скачкообразное изменение структуры и функции органов, систем, которые наблюдаются в период полового созревания.

Акселерация - ускорение роста скелета, мышц, ускоренное половое созревание. Она связана с воздействием природной среды и социальных факторов на организм.

Формирование и развитие организма заканчивается к 20-ти годам. 20-55 (60) лет - зрелый возраст. В этот период функциональная активность органов и систем находится на одном уровне. С 65-70 лет - пожилой возраст - выраженные инволюционные перестройки: снижается основной обмен, нарушается метаболизм в клетках, что и определяет продолжительность жизни человека.

После 75 лет наступает старость, резко снижается активность процессов, появляются старческие болезни, например атеросклероз. Возраст более 90 лет называется периодом долгожительства.

Механизмы нейрогуморальной регуляции с возрастом изменяются. У новорожденных ограничено количество сложных безусловных рефлексов и нет условных. Нервная регуляция несовершенна, но клетки и органы высоко чувствительны к влиянию физиологически активных веществ. По мере роста совершенствуется рефлекторная деятельность центральной нервной системы. К первому году жизни формируются сложные рефлексы, обеспечивающие речь. Одновременно снижается чувствительность к физиологически активным веществам. У зрелого человека нейрогуморальная регуляция высоко организована. В старости отмечаются деструктивные изменения нервных окончаний, снижается количество рецепторов в клетках, снижается их восприимчивость к действию физиологически активных веществ.

В детском возрасте по В. Аршавскому выделяют следующие периоды:

1. Новорожденный - 7-8 дней.

2. Грудного вскармливания - 5-6 месяцев.

3. Смешанного питания - 6-12 месяцев.

4. Ясельного возраста - 1-3 года.

5. Дошкольного возраста - 3-7 лет.

6. Младшего школьного возраста - 7-12 лет.

7. Старшего школьного возраста - 12-17 лет.

8. Юношеского возраста - 17-20 лет.

13.-

14.Биоэлектрические явления в тканях - это разность потенциалов, которая возникает в тканях в процессе нормальной жизнедеятельности. Эти явления можно регистрировать, используя трансмембранный способ регистрации. При этом один электрод располагается на наружной поверхности клетки, другой - на внутренней.

При таком способе регистрируются:

  1. потенциал покоя или мембранный потенциал; 

  2. потенциал действия. 

Общепринятой теорией возникновения биопотенциалов является мембранно-ионная теория. Согласно ей причина возникновения разности потенциалов - неравномерное распределение ионов по обе стороны клеточной мембраны (в системе цитоплазма - кружающая среда)